Abstract

Patient transfer, such as lifting and moving a bedridden patient from a bed to a wheelchair or a pedestal pan, is one of the most physically challenging tasks in nursing care. Although many transfer devices have been developed, they are rarely used because of the large time consumption in performing transfer tasks and the lack of safety and comfortableness. We developed a piggyback transfer robot that can conduct patient transfer by imitating the motion when a person holds another person on his/her back. The robot consisted of a chest holder that moves like a human back. In this paper, we present an active stiffness control approach for the motion control of the chest holder, combined with a passive cushion, for lifting a care-receiver comfortably. A human-robot dynamic model was built and a subjective evaluation was conducted to optimize the parameters of both the active stiffness control and the passive cushion of the chest holder. The test results of 10 subjects demonstrated that the robot could transfer a subject safely, and the combination of active stiffness and passive stiffness were essential to a comfortable transfer. The objective evaluation demonstrated that an active stiffness of k = 4 kPa/mm along with a passive stiffness lower than the stiffness of human chest was helpful for a comfort feeling.

References

1.
Zsiga
,
K.
,
Tóth
,
A.
,
Pilissy
,
T.
,
Péter
,
O.
,
Dénes
,
Z.
, and
Fazekas
,
G.
,
2018
, “
Evaluation of a Companion Robot Based on Field Tests With Single Older Adults in Their Homes
,”
Assist. Technol.
,
30
(
5
), pp.
259
266
.
2.
Sefcik
,
J. S.
,
Johnson
,
M. J.
,
Yim
,
M.
,
Lau
,
T.
,
Vivio
,
N.
,
Mucchiani
,
C.
, and
Cacchione
,
P. Z.
,
2017
, “
Stakeholders’ Perceptions Sought to Inform the Development of a Low-Cost Mobile Robot for Older Adults: A Qualitative Descriptive Study
,”
Clin. Nurs. Res.
,
27
(
1
), pp.
61
80
.
3.
Allison
,
B.
,
Nejat
,
G.
, and
Kao
,
E.
,
2008
, “
The Design of an Expressive Humanlike Socially Assistive Robot
,”
ASME J. Mech. Rob.
,
1
(
1
), p.
011001
.
4.
Riley
,
P. O.
,
Krebs
,
D. E.
, and
Popat
,
R. A.
,
1997
, “
Biomechanical Analysis of Failed Sit-to-Stand
,”
IEEE Trans. Rehabil. Eng.
,
5
(
4
), pp.
353
359
.
5.
Harling
,
M.
,
Schablon
,
A.
, and
Nienhaus
,
A.
,
2018
, “
Validation of the German Version of the Nurse-Work Instability Scale: Baseline Survey Findings of a Prospective Study of a Cohort of Geriatric Care Workers
,”
J. Occup. Med. Toxicol.
,
8
(
1
), p.
33
.
6.
Hignett
,
S.
,
2010
, “
Work-Related Back Pain in Nurses
,”
J. Adv. Nurs.
,
23
(
6
), pp.
1238
1246
.
7.
Greenhalgh
,
M.
,
Landis
,
J. M.
,
Brown
,
J.
,
Kulich
,
H.
,
Bass
,
S.
,
Alqahtani
,
S.
,
Deepak
,
N.
, et al
,
2019
, “
Assessment of Usability and Task Load Demand Using a Robotic Assisted Transfer Device Compared to a Hoyer Advance for Dependent Wheelchair Transfers
,”
Am. J. Phys. Med. Rehabil.
,
98
(
8
), pp.
729
734
.
8.
Kume
,
Y.
, and
Kawakami
,
H.
,
2008
, “
Development of Power-Motion Assist Technology for Transfer Assist Robot
,”
Matsushita Tech. J.
,
54
(
2
), pp.
50
52
.
9.
Shiraishi
,
M.
, and
Watanabe
,
H.
,
1996
, “
Pneumatic Assist Device for Gait Restoration
,”
ASME J. Dyn. Syst. Meas. Control
,
118
(
1
), pp.
9
14
.
10.
Stein
,
J.
,
2009
,
Stroke and the Family: A New Guide
,
Harvard University, Press
,
Harvard
.
11.
Schoenfisch
,
A. L.
,
Lipscomb
,
H. J.
,
Pompeii
,
L. A.
,
Myers
,
D. J.
, and
Dement
,
J. M.
,
2013
, “
Musculoskeletal Injuries Among Hospital Patient Care Staff Before and After Implementation of Patient Lift and Transfer Equipment
,”
Scand. J. Work Environ. Health
,
39
(
1
), pp.
27
36
.
12.
Mukai
,
T.
,
Hirano
,
S.
,
Nakashima
,
H.
,
Kato
,
Y.
,
Sakaida
,
Y.
,
Guo
,
S. J.
, and
Hosoe
,
S.
,
2010
, “
Development of a Nursing-Care Assistant Robot RIBA That can Lift a Human in its Arms
,”
2010 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
,
Taipei, Taiwan
,
Oct. 18–22
, pp.
5996
6001
.
13.
Ding
,
J.
,
Lim
,
Y. J.
,
Solano
,
M.
,
Shadle
,
K.
, and
Hu
,
J.
,
2014
, “
Giving Patients a Lift—The Robotic Nursing Assistant (RoNA)
,”
2014 IEEE International Conference on Technologies for Practical Robot Applications (TePRA)
,
Woburn, MA
,
Apr. 14–15
, pp.
1
5
.
14.
Faucher
,
M.
, and
Brulotte
,
D. A.
,
2016
, “
Patient/Invalid Lift With Support Line Bearing Power and Data Communications
,” United States, US9421140B2, 2016–08–23.
15.
Kawakami
,
H.
,
Kume
,
Y.
,
Nakamura
,
T.
, and
Fujioka
,
S.
,
2010
,
Transfer Assist Device and Transfer Assist Device with Multi-Supporter Mechanism. United States, US2010/0064431A1
.
16.
Toyota motor Co., Ltd
,
2017
, “
A Patient Transfer Assist Robot
,” http://www.toyota.com.cn/technology/robot/robot04.php, Accessed January 24, 2017.
17.
Fuji Machinery Co., Ltd
,
2018
, “
Mobility support robot. FUJI Innovative Spirit
,” https://www.fuji.co.jp/en/about/hug/, Accessed December 13, 2018.
18.
Xu
,
W.
,
2016
, “
Robotic Time-Varying Force Tracking in Position-Based Impedance Control
,”
ASME J. Dyn. Syst. Meas. Control
,
138
(
9
), p.
091008
.
19.
Jamwal
,
P. K.
,
Hussain
,
S.
,
Ghayesh
,
M. H.
, and
Rogozina
,
S. V.
,
2017
, “
Adaptive Impedance Control of Parallel Ankle Rehabilitation Robot
,”
ASME J. Dyn. Syst. Meas. Control
,
139
(
11
), p.
111006
.
20.
Ren
,
T.
,
Dong
,
Y.
,
Wu
,
D.
, and
Chen
,
K.
,
2018
, “
Learning-Based Variable Compliance Control for Robotic Assembly
,”
ASME J. Mech. Rob.
,
10
(
6
), p.
061008
.
21.
Han
,
T.
,
Funabora
,
Y.
,
Doki
,
S.
, and
Doki
,
K.
,
2016
, “
Improvement of Safety by Pressure Distribution Based Stiffness Control for Human Cooperative Robot
,”
JSME Annual Conference on Robotics And Mechatronics (Robomec)
,
Japan
,
January
, pp. 1A2–13b2.
22.
Chu
,
Z.
,
Zhou
,
M.
,
Hu
,
J.
, and
Lu
,
S.
,
2014
, “
Gripping Mode Analysis of an Active-Passive Composited Driving Self-Adaptive Gripper Mechanism
,”
Acta Aeronaut. Astronaut. Sin.
,
35
(
12
), pp.
3451
3458
.
23.
Guadarrama-Olvera
,
J. R.
,
Dean-Leon
,
E.
,
Bergner
,
F.
, and
Cheng
,
G.
,
2019
, “
Pressure-Driven Body Compliance Using Robot Skin
,”
IEEE Robot. Autom. Lett.
,
4
(
4
), pp.
4418
4423
.
24.
Chu
,
Z.
,
Yan
,
S.
,
Hu
,
J.
, and
Lu
,
S.
,
2018
, “
Stiffness Identification Using Tactile Sensing and its Adaptation for an Underactuated Gripper Manipulation
,”
Int. J. Control Autom. Syst.
,
16
(
2
), pp.
875
886
.
25.
Liu
,
Y.
,
Chen
,
G.
,
Liu
,
J.
,
Guo
,
S.
, and
Mukai
,
T.
,
2018
, “
Biomimetic Design of a Chest Carrying Nursing-Care Robot for Transfer Task
,”
2018 IEEE International Conference on Robotics and Biomimetics (ROBIO)
,
Kuala Lumpur, Malaysia
,
Dec. 12–15
, pp.
45
50
.
26.
Craig
,
J. J.
,
1986
,
Introduction to Robotics: Mechanics and Control
,
Pearson Education, Inc.
,
Upper Saddle River, NJ
.
27.
Asada
,
H.
,
2010
,
Introduction to Robotics
,
Addison-Wesley Pub. Co
,
Boston, MA
.
28.
Canfield
,
S. L.
,
Owens
,
J. S.
, and
Zuccaro
,
S. G.
,
2021
, “
Zero Moment Control for Lead-Through Teach Programming and Process Monitoring of a Collaborative Welding Robot
,”
ASME J. Mech. Rob.
,
13
(
3
), p.
031114
.
29.
Chai
,
X.
, and
Dai
,
J. S.
,
2019
, “
Three Novel Symmetric Waldron–Bricard Metamorphic and Reconfigurable Mechanisms and Their Isomerization
,”
ASME J. Mech. Rob.
,
11
(
5
), p.
051011
.
30.
Liu
,
Y.
,
Guo
,
S.
,
Chen
,
G.
,
Liu
,
J.
, and
Gan
,
Z.
,
2020
, “
Bionic Motion Planning and the Analysis for Human Comfort of a Piggyback Nursing-Care Robot for Transfer Tasks
,”
Chin. J. Mech. Eng.
,
56
(
15
), pp.
147
156
.
31.
Weng
,
J.
,
2015
, “
Construction and Analysis of Human Thorax Finite Element Model Applied to External Chest Compression
,”
Ph.D. thesis
,
Southern Medical University
,
Guangzhou, China
.
32.
Tomlinson
,
A. E.
,
Nysaether
,
J.
,
Kramer-Johansen
,
J.
,
Steen
,
P. A.
, and
Dorph
,
E.
,
2006
, “
Compression Force–Depth Relationship During Out-of-Hospital Cardiopulmonary Resuscitation
,”
Resuscitation
.
33.
Halperin
,
H. R.
,
Guerci
,
A. D.
,
Chandra
,
N.
,
Herskowitz
,
A.
,
Tsitlik
,
J. E.
,
Niskanen
,
R. A.
,
Wurmb
,
E.
, and
Weisfeldt
,
M. L.
,
1986
, “
Vest Inflation Without Simultaneous Ventilation During Cardiac Arrest in Dogs: Improved Survival From Prolonged Cardiopulmonary Resuscitation
,”
Circulation
,
74
(
6
), pp.
1407
1415
.
34.
Wang
,
T.
,
Jeong
,
H.
,
Watanabe
,
M.
,
Iwatani
,
Y.
, and
Ohno
,
Y.
,
2018
, “
Fault Classification With Discriminant Analysis During Sit-to-Stand Movement Assisted by a Nursing Care Robot
,”
Mech. Syst. Signal Process.
,
113
, pp.
90
101
.
35.
Goncalves
,
R.
,
Hamilton
,
T.
,
Daher
,
A.
,
Hirai
,
H.
, and
Krebs
,
H.
,
2017
, “
MIT-Skywalker: Evaluating Comfort of Bicycle/Saddle Seat
,”
2017 IEEE International Conference on Rehabilitation Robotics (ICORR)
,
London, UK
,
July 17–20
, pp.
516
520
.
36.
Li
,
X.
,
Ding
,
L.
,
Ma
,
X.
, and
Liu
,
H.
,
2017
, “
Development of a Human-Seat Cushion Finite Element Model for Sitting Comfort Analysis
,”
2017 International Conference on Human-Computer Interaction
,
Craiova, Romania
,
Sept. 11–12
, pp.
261
266
.
37.
Singh
,
R.
,
Leon
,
D. A. C.
,
Morrow
,
M. M.
,
Vos-Draper
,
T. L.
,
Mc Gree
,
M. E.
,
Weaver
,
A. L.
,
Woolley
,
S. M.
,
Hallbeck
,
S.
,
Gebhart
,
J. B.
,
2016
, “
Effect of Chair Types on Work-Related Musculoskeletal Discomfort During Vaginal Surgery
,”
Am. J. Obstet. Gynecol.
,
215
(
5
), pp.
648.e1
648.e9
.
38.
Mastrigt
,
S. H.
,
Groenesteijn
,
L.
,
Vink
,
P.
, and
Kuijt-Evers
,
L. F. M.
,
2016
, “
Predicting Passenger Seat Comfort and Discomfort on the Basis of Human, Context and Seat Characteristics: A Literature Review
,”
Ergonomics
,
60
(
7
), pp.
1
44
.
You do not currently have access to this content.