Abstract

Exploring the locomotion of creatures is a challenging task in bionic robots, and the existing iterative design methods are mainly based on one or two characteristics to optimize robots. Here, we introduce the thinking of system identification theory to bionic robots, bypassing the exploration of the dynamics and reducing the difficulty of design greatly. A one-degree-of-freedom (DOF) six-bar mechanism (Watt I) was designated as the model to be identified, and it was divided into two parts, i.e., a one-DOF four-bar linkage and a three-DOF series arm. Then, we formed constraints and a loss function. The parameters of the model were identified based on the kinematic data of a jumping marmoset, an animal chosen for its unusually high mass-specific power output. As a result, we obtained the desired model. Then, a prototype derived from the model was fabricated, and the experiments verified the effectiveness of the method. Based on the success of our experiments, we believe our method can be applied to emulate other motions as well.

References

1.
Ren
,
S.
,
He
,
K.
,
Girshick
,
R.
, and
Sun
,
J.
,
2015
, “
Faster R-CNN: Towards Real-Time Object Detection With Region Proposal Networks
,”
Int. Conf. Neu. Inform. Pro. Sys.
,
39
(
6
), pp.
91
99
.
2.
Noh
,
M.
,
Kim
,
S. W.
,
An
,
S.
,
Koh
,
J. S.
, and
Cho
,
K. J.
,
2012
, “
Flea-Inspired Catapult Mechanism for Miniature Jumping Robots
,”
IEEE Trans. Robot.
,
28
(
5
), pp.
1007
1018
.
3.
Li
,
F.
,
Liu
,
W.
,
Fu
,
X.
,
Bonsignori
,
G.
,
Scarfogliero
,
U.
,
Stefanini
,
C.
, and
Dario
,
P.
,
2012
, “
Jumping Like an Insect: Design and Dynamic Optimization of a Jumping Mini Robot Based on Bio-Mimetic Inspiration
,”
Mechatronics
,
22
(
2
), pp.
167
176
.
4.
Woodward
,
M. A.
, and
Sitti
,
M.
,
2014
, “
MultiMo-Bar: A Biologically Inspired Integrated Jumping-Gliding Robot
,”
Int. J. Rob. Res.
,
33
(
12
), pp.
1511
1529
.
5.
Plecnik
,
M. M.
,
Haldane
,
D. W.
,
Yim
,
J. K.
, and
Fearing
,
R. S.
,
2017
, “
Design Exploration and Kinematic Tuning of a Power Modulating Jumping Monopod
,”
ASME J. Mech. Rob.
,
9
(
1
), p.
011009
.
6.
Jung
,
G. P.
,
Casarez
,
C. S.
,
Jung
,
S. P.
,
Fearing
,
R. S.
, and
Cho
,
K. J.
,
2016
, “
An Integrated Jumping-Crawling Root Using Height-Adjustable Jumping Module
,”
Proceedings of the IEEE International Conference on Robotics and Automation
,
Sweden
,
May
,
IEEE
, pp.
4680
4685
.
7.
Wei
,
D.
, and
Ge
,
W.
,
2014
, “
Research on One Bio-inspired Jumping Locomotion Robot for Search and Rescue
,”
Int. J. Adv. Rob. Sys.
,
11
(
168
), pp.
1
10
.
8.
Kenneally
,
G.
, and
Koditschek
,
D. E.
,
2015
, “
Leg Design for Energy Management in an Electromechanical Robot
,”
IEEE International Conference on Intelligent Robotics and Systems
,
IEEE
,
Hamburg
.
9.
Song
,
G.
,
Yin
,
K.
,
Zhou
,
Y.
, and
Cheng
,
X.
,
2009
, “
A Surveillance Robot With Hopping Capabilities for Home Security
,”
IEEE Trans. Consum. Electron.
,
55
(
4
), pp.
2034
2039
.
10.
Scarfogliero
,
U.
,
Stefanini
,
C.
, and
Dario
,
P.
,
2009
, “
The Use of Compliant Joints and Elastic Energy Storage in Bio-inspired Legged Robots
,”
Mech. Mach. Theory
,
44
(
3
), pp.
580
590
.
11.
Dharmawan
,
A. G.
,
Xavier
,
P.
,
Hariri
,
H. H.
,
Soh
,
G. S.
,
Baji
,
A.
,
Bouffanais
,
R.
,
Foong
,
S.
,
Low
,
H. Y.
, and
Wood
,
K. L.
,
2019
, “
Design, Modeling, and Experimentation of a Bio-inspired Miniature Climbing Robot With Bilayer Dry Adhesives
,”
ASME J. Mech. Rob.
,
11
(
2
), p.
020902
.
12.
Zhang
,
J.
,
Song
,
G.
,
Li
,
Y.
,
Qiao
,
G.
,
Song
,
A.
, and
Wang
,
A.
,
2013
, “
A Bio-inspired Jumping Robot: Modeling, Simulation, Design, and Experimental Results
,”
Mechatronics
,
23
(
8
), pp.
436
440
.
13.
Jung
,
G. P.
, and
Cha
,
K. J.
,
2016
, “
Froghopper-Inspired Direction-Changing Concept for Miniature Jumping Robots
,”
Bioinspiration Biomimetics
,
11
(
5
), p.
056015
.
14.
Gerratt
,
A. P.
, and
Bergbreiter
,
S.
,
2013
, “
Incorporating Compliant Elastomers for Jumping Locomotion in Microrobots
,”
Smart Mater. Struct.
,
22
(
1
), p.
014010
.
15.
Hong
,
C.
,
Tang
,
D.
,
Quan
,
Q.
,
Cao
,
Z.
, and
Deng
,
Z.
,
2020
, “
A Combined Series-Elastic Actuator & Parallel-Elastic leg no-Latch Bio-inspired Jumping Robot
,”
Mech. Mach. Theory
,
149
, p.
103814
.
16.
Lu
,
Y. X.
,
2004
, “
Significance and Process of Bionics
,”
J. Bio. Eng.
,
1
(
1
), pp.
1
3
.
17.
Bobbert
,
M. F.
,
Plas
,
R. L. C.
,
Weide
,
G.
,
Clairbois
,
H. E.
,
Hofman
,
S. O.
,
Jaspers
,
R. T.
, and
Philippines
,
I. H.
,
2014
, “
Mechanical Output in Jumps of Marmosets (Callithrix Jacchus)
,”
J. Exp. Biol.
,
217
(
4
), pp.
482
488
.
18.
Kalouche
,
S.
,
2017
, “
GOAT: A Legged Robot with 3D Agility and Virtual Compliance
,”
Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
,
IEEE
, pp.
4110
4117
.
19.
Baskar
,
A.
, and
Bandyopadhyay
,
S.
,
2019
, “
An Algorithm to Compute the Finite Roots of Large Systems of Polynomial Equations Arising in Kinematic Synthesis
,”
Mech. Mach. Theory
,
133
, pp.
493
513
.
20.
Peón-Escalante
,
R.
,
Jiménez
,
F. C.
,
Soberanis
,
M. E.
, and
Peñuñuri
,
F.
,
2020
, “
Path Generation With Dwells in the Optimum Dimensional Synthesis of Stephenson III Six-Bar Mechanisms
,”
Mech. and Mach. Theory
,
144
, p.
103650
.
21.
Ljung
,
L.
,
1978
, “
Convergence Analysis of Parametric Identification Methods
,”
IEEE Trans. Auto. Cont.
,
23
(
5
), pp.
770
783
.
22.
Hartenberg
,
R.
, and
Danavit
,
J.
,
1964
,
Kinematic Synthesis of Linkages
,
McGraw-Hill
,
New York
.
23.
Zhang
,
Z.
,
Yang
,
Q.
,
Zhao
,
J.
, and
Gui
,
S.
,
2019
, “
Dynamic Model and Performance Analysis of Rigid-Flexible Coupling Four-Bar Mechanism for Small Scale Bio-inspired Jumping Robot
,”
Microsyst. Technol.
,
25
(
9
), pp.
3269
3258
.
24.
Truong
,
N. T.
,
Phan
,
H. V.
, and
Park
,
H. C.
,
2019
, “
Design and Demonstration of a bio-Inspired Flapping-Wing-Assisted Jumping Robot
,”
Bioinspiration Biomimetics
,
14
(
3
), p.
036010
.
25.
ZiQiang
,
Z.
,
Qi
,
Y.
,
Shun
,
G.
,
Bin
,
C.
,
Jing
,
Z.
,
HaiSheng
,
Y.
, and
DianSheng
,
C.
,
2019
, “
Mechanism Design for Locust-Inspired Robot With One-DOF Leg Based on Jumping Stability
,”
Mech. Mach. Theory
,
133
, pp.
584
605
.
26.
Shun
,
G.
,
2019
, “
Identification Design of One-DOF Eight-Bar Based on Limb Movements
,”
Mech. Mach. Theory
,
142
, p.
103592
.
27.
Wampler
,
C.
,
2007
, “
Numerical Algebraic Geometry and Kinematics
,”
International Workshop on Symbolic-Numeric Computation
,
New York
,
July 25
, pp.
29
32
.
28.
Claesen
,
M.
, and
De Moor
,
B.
,
2015
, “
Hyperparameter Search in Machine Learning
,”
arXiv preprint
29.
Jun
,
B. R.
,
Kim
,
Y. J.
, and
Jung
,
S.
,
2016
, “
Design and Control of Jumping Mechanism for a Kangaroo-Inspired Robot
,”
Proceedings of the IEEE International Conference Biomedical Robotics & Biomechatronics
,
Singapore
,
June 26
,
IEEE
, pp.
436
440
.
30.
Armour
,
R.
,
Paskins
,
K.
,
Bowyer
,
A.
,
Vincent
,
J.
, and
Megill
,
W.
,
2007
, “
Jumping Robots: A Biomimetic Solution to Locomotion Across Rough Terrain
,”
Bioinspiration Biomimetics
,
2
(
3
), pp.
S65
S82
.
31.
Haldane
,
D. W.
,
Plecnik
,
M. M.
,
Yim
,
J. K.
, and
Fearing
,
R. S.
,
2016
, “
Robotic Vertical Jumping Ability via Series-Elastic Power Modulation
,”
Sci. Robot.
,
1
(
1
).
You do not currently have access to this content.