Abstract

We present a novel, rigidly folding vertex inspired by the shape of the simplest hanging drape. Fold lines in the vertex correspond to pleats and ridges in the drape and are symmetrically arranged to enable synchronized flat folding of facet pairs. We calculate the folded rotation angles exactly using a spherical image specialized for inextensible vertex folding. We show that the vertex shape is bounded by a pair of conical surfaces whose apex semi-angles directly correspond with fold-line rotations, which expresses a geometrical equivalence between the external shape and internal folding motion of the vertex. We discuss how the vertex, viz. drape, perform as a novel type of conical defect based on its spherical image topography, and we highlight the meaning of bistable behavior for the vertex in analytical and practical terms.

References

1.
Cerda
,
E.
,
Mahadevan
,
L.
, and
Pasini
,
J. M.
,
2004
, “
The Elements of Draping
,”
Proc. Natl. Acad. Sci.
,
101
(
7
), pp.
1806
1810
.
2.
Boedec
,
G.
, and
Deschamps
,
J.
,
2020
, “
Disk Wrinkling Under Gravity
,”
Soft Conden. Matter
.
3.
Miura
,
K.
, and
Pellegrino
,
S.
,
2020
,
Forms and Concepts for Lightweight Structures
,
Cambridge University Press
,
Cambridge, UK
.
4.
Calladine
,
C. R.
,
1983
,
Theory of Shell Structures
,
Cambridge University Press
,
Cambridge, UK
.
5.
Cerda
,
E.
,
Chaieb
,
S.
,
Melo
,
F.
, and
Mahadevan
,
L.
,
1999
, “
Conical Dislocations in Crumpling
,”
Nature
,
401
(
6748
), pp.
46
49
.
6.
Seffen
,
K. A.
,
2016
, “
Fundamental Conical Defects: The D-Cone, Its E-Cone, and Its P-Cone
,”
Phys. Rev. E
,
94
(
1
), p.
013002
.
7.
MATLAB Release
,
2013
,
MATLAB Release 2013b
,
The MathWorks, Inc.
,
Natick, Massachusetts, United States
.
8.
Todhunter
,
I.
,
1886
,
Spherical Trigonometry
,
Macmillan Publishers
,
Stuttgart, Germany
.
9.
Farmer
,
S. M.
, and
Calladine
,
C. R.
,
2005
, “
Geometry of “Developable Cones
,”
Int. J. Mech. Sci.
,
47
(
4–5
), pp.
509
520
.
10.
Holmes
,
D. P.
, and
Crosby
,
A. J.
,
2010
, “
Draping Films: A Wrinkle to Fold Transition
,”
Phys. Rev. Lett.
,
105
(
3
), p.
038303
.
11.
Walker
,
M. G.
, and
Seffen
,
K. A.
,
2017
, “
Localisation in Thin Metallic Annuli Due to Diametrical Extension
,”
AIAA J.
,
55
(
11
), pp.
3980
3989
.
12.
McNeel
,
R.
,
2021
,
Rhinoceros, Version 6
,
Robert McNeel & Associates
,
Seattle, WA
.
13.
Eatough
,
D. T.
, and
Seffen
,
K. A.
,
2020
, “
Calculating the Fold Angles of Any Vertex Roof Using a Spherical Image Technique
,”
ASME J. Mech. Rob.
,
12
(
3
), p.
031004
.
14.
Taffetani
,
M.
,
Jiang
,
X.
,
Holmes
,
D. P.
, and
Vella
,
D.
,
2018
, “
Static Bistability of Spherical Caps
,”
Proc. R. Soc. Lond., Ser. A
,
474
(
2213
), p.
20170910
.
15.
Lechenault
,
F.
, and
Adda-Bedia
,
M.
,
2015
, “
Generic Bistability in Creased Conical Surfaces
,”
Phys. Rev. Lett.
,
115
(
23
), p.
235501
.
16.
Brunck
,
V.
,
Lechenault
,
F.
,
Reid
,
A.
, and
Adda-Bedia
,
M.
,
2016
, “
Elastic Theory of Origami-Based Metamaterials
,”
Phys. Rev. E
,
93
(
3
), p.
033005
.
You do not currently have access to this content.