Abstract

Soft robotic grippers can gently grasp and maneuver objects. However, they are difficult to model and control due to their highly deformable fingers and complex integration with robotic systems. This paper investigates the design requirements as well as the grasping capabilities and performance of a soft gripper system based on fluidic prestressed composite (FPC) fingers. An analytical model is constructed as follows: each finger is modeled using the chained composite model (CCM); strain energy and work done by pressure and loads are computed using polynomials with unknown coefficients; net energy is minimized using the Rayleigh–Ritz method to calculate the deflected equilibrium shapes of the finger as a function of pressure and loads; and coordinate transformation and gripper geometries are combined to analyze the grasping performance. The effects of prestrain, integration angle, and finger overlap on the grasping performance are examined through a parametric study. We also analyze gripping performance for cuboidal and spherical objects and show how the grasping force can be controlled by varying fluidic pressure. The quasi-static responses of fabricated actuators are measured under pressures and loads. It is shown that the actuators’ modeled responses agree with the experimental results. This work provides a framework for the theoretical analysis of soft robotic grippers and the methods presented can be extended to model grippers with different types of actuation.

References

1.
Shintake
,
J.
,
Cacucciolo
,
V.
,
Floreano
,
D.
, and
Shea
,
H.
,
2018
, “
Soft Robotic Grippers
,”
Adv. Mater.
,
30
(
29
), p.
1707035
.
2.
Zou
,
J.
,
Lin
,
Y.
,
Ji
,
C.
, and
Yang
,
H.
,
2018
, “
A Reconfigurable Omnidirectional Soft Robot Based on Caterpillar Locomotion
,”
Soft Rob.
,
5
(
2
), pp.
164
174
.
3.
Zhou
,
J.
,
Chen
,
X.
,
Chang
,
U.
,
Lu
,
J.-T.
,
Leung
,
C. C. Y.
,
Chen
,
Y.
,
Hu
,
Y.
, and
Wang
,
Z.
,
2019
, “
A Soft-Robotic Approach to Anthropomorphic Robotic Hand Dexterity
,”
IEEE Access
,
7
, p.
101483
.
4.
Krahn
,
J. M.
,
Fabbro
,
F.
, and
Menon
,
C.
,
2017
, “
A Soft-Touch Gripper for Grasping Delicate Objects
,”
IEEE/ASME Trans. Mechatron.
,
22
(
3
), pp.
1276
1286
.
5.
Glick
,
P.
,
Suresh
,
S. A.
,
Ruffatto
,
D.
,
Cutkosky
,
M.
,
Tolley
,
M. T.
, and
Parness
,
A.
,
2018
, “
A Soft Robotic Gripper With Gecko-Inspired Adhesive
,”
IEEE Rob. Autom. Lett.
,
3
(
2
), pp.
903
910
.
6.
Gao
,
Y.
,
Huang
,
X.
,
Mann
,
I. S.
, and
Su
,
H.-J.
,
2020
, “
A Novel Variable Stiffness Compliant Robotic Gripper Based on Layer Jamming
,”
J. Mech. Rob.
,
12
(
5
), p.
051013
.
7.
Kim
,
T.
,
Yoon
,
S. J.
, and
Park
,
Y.-L.
,
2018
, “
Soft Inflatable Sensing Modules for Safe and Interactive Robots
,”
IEEE Rob. Autom. Lett.
,
3
(
4
), pp.
3216
3223
.
8.
Zhou
,
Y.
,
Headings
,
L. M.
, and
Dapino
,
M. J.
,
2020
, “
Discrete Layer Jamming for Variable Stiffness Co-Robot Arms
,”
J. Mech. Rob.
,
12
(
1
), p.
015001
.
9.
Zeng
,
X.
,
Hurd
,
C.
,
Su
,
H.-J.
,
Song
,
S.
, and
Wang
,
J.
,
2020
, “
A Parallel-Guided Compliant Mechanism With Variable Stiffness Based on Layer Jamming
,”
Mech. Mach. Theory.
,
148
, p.
103791
.
10.
Polygerinos
,
P.
,
Correll
,
N.
,
Morin
,
S. A.
,
Mosadegh
,
B.
,
Onal
,
C. D.
,
Petersen
,
K.
,
Cianchetti
,
M.
,
Tolley
,
M. T.
, and
Shepherd
,
R. F.
,
2017
, “
Soft Robotics: Review of Fluid-Driven Intrinsically Soft Devices; Manufacturing, Sensing, Control, and Applications in Human-Robot Interaction
,”
Adv. Eng. Mater.
,
19
(
12
), p.
1700016
.
11.
Gorissen
,
B.
,
Reynaerts
,
D.
,
Konishi
,
S.
,
Yoshida
,
K.
,
Kim
,
J.-W.
, and
De Volder
,
M.
,
2017
, “
Elastic Inflatable Actuators for Soft Robotic Applications
,”
Adv. Mater.
,
29
(
43
), p.
1604977
.
12.
Sun
,
Y.
,
Song
,
Y. S.
, and
Paik
,
J.
,
2013
, “
Characterization of Silicone Rubber Based Soft Pneumatic Actuators
,”
2013 IEEE/RSJ International Conference on Intelligent Robots and Systems
,
Tokyo, Japan
, IEEE, pp.
4446
4453
.
13.
Ilievski
,
F.
,
Mazzeo
,
A. D.
,
Shepherd
,
R. F.
,
Chen
,
X.
, and
Whitesides
,
G. M.
,
2011
, “
Soft Robotics for Chemists
,”
Angew. Chem., Int. Ed.
,
50
(
8
), pp.
1890
1895
.
14.
Tondu
,
B.
, and
Lopez
,
P.
,
2000
, “
Modeling and Control of McKibben Artificial Muscle Robot Actuators
,”
IEEE Control Syst. Mag.
,
20
(
2
), pp.
15
38
.
15.
Hao
,
Y.
,
Wang
,
T.
,
Ren
,
Z.
,
Gong
,
Z.
,
Wang
,
H.
,
Yang
,
X.
,
Guan
,
S.
, and
Wen
,
L.
,
2017
, “
Modeling and Experiments of a Soft Robotic Gripper in Amphibious Environments
,”
Int. J. Adv. Rob. Syst.
,
14
(
3
), p.
1729881417707148
.
16.
Wang
,
Z.
, and
Hirai
,
S.
,
2017
, “
Soft Gripper Dynamics Using a Line-Segment Model With An Optimization-Based Parameter Identification Method
,”
IEEE Rob. Autom. Lett.
,
2
(
2
), pp.
624
631
.
17.
Li
,
Y.
,
Chen
,
Y.
,
Yang
,
Y.
, and
Wei
,
Y.
,
2017
, “
Passive Particle Jamming and Its Stiffening of Soft Robotic Grippers
,”
IEEE Trans. Rob.
,
33
(
2
), pp.
446
455
.
18.
Zhou
,
Y.
,
Headings
,
L. M.
, and
Dapino
,
M. J.
,
2021
, “
Modeling of Fluidic Prestressed Composite Actuators with Application to Soft Robotic Grippers
,”
IEEE Trans. Rob.
19.
Zhou
,
X.
,
Majidi
,
C.
, and
O’Reilly
,
O. M.
,
2015
, “
Soft Hands: An Analysis of Some Gripping Mechanisms in Soft Robot Design
,”
Int. J. Solids. Struct.
,
64
, pp.
155
165
.
20.
Haibin
,
Y.
,
Cheng
,
K.
,
Junfeng
,
L.
, and
Guilin
,
Y.
,
2018
, “
Modeling of Grasping Force for a Soft Robotic Gripper With Variable Stiffness
,”
Mech. Mach. Theory.
,
128
, pp.
254
274
.
21.
Li
,
Y.
,
Chen
,
Y.
,
Ren
,
T.
,
Li
,
Y.
, and
Choi
,
S. H.
,
2018
, “
Precharged Pneumatic Soft Actuators and Their Applications to Untethered Soft Robots
,”
Soft Rob.
,
5
(
5
), pp.
567
575
.
22.
Chillara
,
V. S.
,
Headings
,
L. M.
, and
Dapino
,
M. J.
,
2016
, “
Multifunctional Composites With Intrinsic Pressure Actuation and Prestress for Morphing Structures
,”
Composite Struct.
,
157
, pp.
265
274
.
23.
Hyer
,
M. W.
, and
White
,
S. R.
,
2009
,
Stress Analysis of Fiber-Reinforced Composite Materials
,
DEStech Publications, Inc
,
Lancaster, PA
.
24.
Reddy
,
J. N.
,
2006
,
Theory and Analysis of Elastic Plates and Shells
,
CRC Press
,
Boca Raton, FL
.
25.
Polygerinos
,
P.
,
Wang
,
Z.
,
Overvelde
,
J. T.
,
Galloway
,
K. C.
,
Wood
,
R. J.
,
Bertoldi
,
K.
, and
Walsh
,
C. J.
,
2015
, “
Modeling of Soft Fiber-Reinforced Bending Actuators
,”
IEEE Trans. Rob.
,
31
(
3
), pp.
778
789
.
You do not currently have access to this content.