Abstract

Balancing the torque of mechanisms designed to minimize the fluctuation of input shaft torque is an effective means of improving their dynamic performance. There are several ways of solving the problem: optimizing the distribution of the moving mass of the original mechanism; cam sub-systems that displace the balancing mass; cam-spring mechanisms; flywheels driven by noncircular gears; adding articulated dyads, linkages or redundant drivers. This paper addresses the problem of input torque compensation with the optimal connection of two identical slider-crank mechanisms. The acceleration and deceleration phases of the links of the slide-crank mechanism obviously change periodically, causing torque to fluctuate at the input shaft. The problem is how to connect two mechanisms in order to reduce the input torque. This is done by minimizing the root-mean-square value of the input torque of the combined linkages. Two schemes are considered: slider-crank mechanisms with sliders moving on the same side, and on opposite sides. The prime value of this study is that it proposes an analytically tractable solution for identifying the general dynamic properties of mechanisms. Based on the ratio of link lengths, the precise relations for optimal connection of identical slider-crank mechanisms, i.e., a connection that produces the minimum root-mean-square values of the input torque, are developed. The numerical simulations illustrate the efficiency of the suggested approach. Observations show that the best solutions from the point of view of input torque minimization are obtained for the value of the coupling angle of two mechanisms around 90 deg.

References

1.
Berkof
,
R. S.
,
1979
, “
The Input Torque in Linkages
,”
Mech. Mach. Theory
,
14
(
1
), pp.
61
73
.
2.
Zappa
,
B.
,
Lorenzo
,
V.
,
Reghettini
,
P.
, and
Strada
,
R.
,
2017
, “
Design of Torque Balancing Mechanisms
,”
J. Mech. Eng. Autom.
,
7
(
6
), pp.
312
320
.
3.
Sherwood
,
A. A.
,
1966
, “
The Dynamics of the Harmonic Space Slider-Crank Mechanism
,”
J. Mech.
,
1
(
2
), pp.
203
208
.
4.
Sherwood
,
A. A.
,
1966
, “
The Optimum Distribution of Mass in the Coupler of a Plane Four-Bar Linkage
,”
J. Mech.
,
1
(
3–4
), pp.
229
234
.
5.
Hockey
,
B. A.
,
1971
, “
An Improved Technique for Reducing the Fluctuation of Kinetic Energy in Plane Mechanisms
,”
J. Mech.
,
6
(
4
), pp.
405
418
.
6.
Hockey
,
B. A.
,
1972
, “
The Minimization of the Fluctuation of Input-Shaft Torque in Planar Mechanisms
,”
Mech. Mach. Theory
,
7
(
3
), pp.
335
346
.
7.
Elliott
,
J. L.
, and
Tesar
,
D.
,
1977
, “
The Theory of Torque, Shaking Force and Shaking Moment Balancing of Four Link Mechanisms
,”
J. Eng. Ind.
,
99B
(
3
), pp.
715
721
.
8.
Elliott
,
J. L.
, and
Tesar
,
D.
,
1982
, “
A General Mass Balancing Method for Complex Planar Mechanisms
,”
Mech. Mach. Theory
,
17
(
2
), pp.
153
172
.
9.
Soong
,
R. C.
, and Yan
,
H.-S.
,
2007
, “
Simultaneous Minimization of Shaking Moment, Driving Torque, and Bearing Reactions of Complete Force Balanced Linkages
,”
J. Chin. Soc. Mech. Eng.
,
28
(
3
), pp.
243
254
.
10.
Yan
,
H. S.
, and
Soong
,
R. C.
,
2001
, “
Kinematic and Dynamic Design of Four-Bar Linkages by Links Counterweighing with Variable Input Speed
,”
Mech. Mach. Theory
,
36
(
9
), pp.
1051
1071
.
11.
Arakelian
,
V.
,
2007
, “
Complete Shaking Force and Shaking Moment Balancing of RSS'R Spatial Linkages
,”
J. Multi-Body Dyn.
,
221
(
2
), pp.
303
310
.
12.
Chaudhary
,
H.
, and
Saha
,
S. K.
,
2007
, “
Balancing of Four-Bar Linkages Using Maximum Recursive Dynamic Algorithm
,”
Mech. Mach. Theory
,
42
(
2
), pp.
216
232
.
13.
Arakelian
,
V.
, and
Briot
,
S.
,
2015
,
Balancing of Linkages and Robot Manipulators. Advanced Methods With Illustrative Examples
,
Springer
,
Switzerland
.
14.
Matthew
,
G. K.
, and
Tesar
,
D.
,
1977
, “
Synthesis of Spring Parameters to Satisfy Specified Energy Level in Planar Mechanisms
,”
J. Eng. Ind.
,
99B
(
2
), pp.
341
346
.
15.
Matthew
,
G. K.
, and
Tesar
,
D.
,
1977
, “
Synthesis of Spring Parameters to Balance General Forcing Function in Planar Mechanisms
,”
J. Eng. Ind.
,
99B
(
2
), pp.
347
352
.
16.
Arakelian
,
V.
,
Le Baron
,
J.-P.
, and
Mkrtchyan
,
M.
,
2016
, “
Design of Scotch Yoke Mechanisms with Improved Driving Dynamics
,”
J. Multi-body Dyn.
,
230
(
4
), pp.
379
386
.
17.
Artobolewski
,
I. I.
,
1958
, “
Das Dynamische Laufkriterium bei Getrieben
,”
Maschinenbautechnik
,
7
(
12
), pp.
663
667
.
18.
Meyer zur Capellen
,
W.
,
1964
, “
Die Bewegung Periodischer Getriebe unter Einfluss von Kraft- und Massenwirkungen
,”
lndustrie-Anzeiger
,
86
(
9
), pp.
135
140
.
19.
Meyer zur Capellen
,
W.
,
1964
, “
Die Bewegung Periodischer Getriebe unter Einfluss von Kraft- und Massenwirkungen
,”
lndustrie-Anzeiger
,
86
(
17
), pp.
282
289
.
20.
Meyer zur Capellen
,
W.
,
1965
, “
Dynamische Ausgleichprobleme bei Ebenen und Spharischen Kurbeltrieben
,”
Transactions of the International Conference and Machines. I
,
Varna, Bulgaria
,
September
, pp.
3
22
.
21.
Demeulenaere
,
B.
,
Swevers
,
J.
, and
De Schutter
,
J.
,
2005
, “
Input Torque Balancing Using a Cam-Based Centrifugal Pendulum: Design Procedure and Example
,”
J. Sound Vib.
,
283
(
1–2
), pp.
1
20
.
22.
Demeulenaere
,
B.
,
Swevers
,
J.
, and
De Schutter
,
J.
,
2005
, “
Input Torque Balancing Using a Cam-Based Centrifugal Pendulum: Design Optimization and Robustness
,”
J. Sound Vib.
,
283
(
1–2
), pp.
21
46
.
23.
Demeulenaere
,
B.
, and
De Schutter
,
J.
,
2005
, “
Input Torque Balancing Using Inverted Cam Mechanisms
,”
ASME J. Mech. Des.
,
127
(
6
), pp.
887
900
.
24.
Demeulenaere
,
B.
,
Spaepen
,
P.
,
Masselis
,
S.
,
Cornelissen
,
P.
,
Pinte
,
G.
,
Hemelsoen
,
J.
,
Boonen
, et al,
2008
, “
Experimental Validation of Input Torque Balancing Applied to Weaving Machinery
,”
ASME J. Mech. Des.
,
130
(
2
), p.
022307
.
25.
Lee
,
T. M.
,
Lee
,
D. Y.
,
Lee
,
H. C.
, and
Yang
,
M. Y.
,
2009
, “
Design of Cam-Type Transfer Unit Assisted with Conjugate Cam and Torque Control cam
,”
Mech. Mach. Theory
,
44
(
6
), pp.
1144
1155
.
26.
Gao
,
F.
,
Liu
,
Y.
, and
Liao
,
W.-H.
,
2018
, “
Cam Profile Generation for Cam-Spring Mechanism With Desired Torque
,”
ASME J. Mech. Rob.
,
10
(
4
), p.
041009
.
27.
Ogawa
,
K.
, and
Funabashi
,
H.
,
1969
, “
On the Balancing of the Fluctuating Input Torques Caused by Inertia Forces in the Crank-and-Rocker Mechanisms
,”
J. Eng. Ind.
,
91
(
1
), pp.
97
102
.
28.
Kulitzscher
,
P.
,
1970
, “
Leistungsausgleich von Koppelgetrieben Durch Veränderung der Massenverteilung oder Zusatzkoppelgetriebe
,”
Maschinenbautechnik
,
19
(
1
), pp.
562
568
.
29.
Bagci
,
C.
,
1978
, “
Synthesis of the Plane Four-Bar Mechanism for Torque Generation, and Application to a Case Study for the Design of a New Balancing Mechanism for Rotary Top Brush in Power Wax Car Washing Machines
,”
ASME Mechanisms Conference
,
Chicago
,
April
.
30.
Huang
,
Z.
,
1985
, “
Synthesis of a Dyad to Balance the Inertia Input Torque of Crank, Rocker Mechanisms
,”
Proceeding of 4th International Conference on the Theory of Machines and Mechanisms Symposium on Linkage and CAD Methods
,
Romania
, Vol. I-1, pp.
185
192
.
31.
Yong
,
L. D.
, and
Huang
,
Z.
,
1989
, “
Input Torque Balancing of Linkages
,”
Mech. Mach. Theory
,
24
(
2
), pp.
99
103
.
32.
Kochev
,
I. S.
,
1990
, “
General Method for Active Balancing of Combined Shaking Moment and Torque Fluctuations in Planar Linkages
,”
Mech. Mach. Theory
,
25
(
6
), pp.
679
687
.
33.
Dooner
,
D. B.
,
1197
, “
Use of Noncircular Gears to Reduce Torque and Speed Fluctuations in Rotating Shafts
,”
ASME J. Mech. Des.
,
119
(
2
), pp.
299
306
.
34.
Barkah
,
D.
,
Shafiq
,
B.
, and
Dooner
,
D.
,
2202
, “
3D Mesh Generation for Static Stress Determination in Spiral Noncircular Gears Used for Torque Balancing
,”
ASME J. Mech. Des.
,
124
(
2
), pp.
313
319
.
35.
Yao
,
Y. A.
, and
Yan
,
H. S.
,
2003
, “
A New Method for Torque Balancing of Planar Linkages Using Non-Circular Gears
,”
J. Mech. Eng. Sci.
,
217
(
5
), pp.
495
503
.
36.
Dresig
,
H.
, and
Schönfeld
,
S.
,
1976
, “
Rechnergestützte Optimierung der Antriebs- und Gestellkraftgrössen ebener Koppelgetriebe—Teil I
,”
Mech. Mach. Theory
,
11
(
6
), pp.
363
370
.
37.
Dresig
,
H.
, and
Schönfeld
,
S.
,
1976
, “
Rechnergestützte Optimierung der Antriebs- und Gestellkraftgrössen ebener Koppelgetriebe—Teil II
,”
Mech. Mach. Theory
,
11
(
6
), pp.
371
379
.
38.
Lee
,
T. W.
, and
Cheng
,
C.
,
1984
, “
Optimum Balancing of Combined Shaking Force, Shaking Moment, and Torque Fluctuations in High Speed Linkages
,”
J. Mech. Trans. Autom. Des.
,
106
(
2
), pp.
242
251
.
39.
Chaudhary
,
H.
, and
Saha
,
S. K.
,
2008
, “
An Optimization Technique for the Balancing of Spatial Mechanisms
,”
Mech. Mach. Theory
,
43
(
4
), pp.
506
522
.
40.
Chaudhary
,
H.
, and
Saha
,
S. K.
,
2009
,
Dynamics and Balancing of Multibody Systems
,
Springer
,
Berlin
.
41.
Arakawa
,
M.
,
Nishioka
,
M.
, and
Morita
,
N.
,
1997
, “
Torque Compensation Cam Mechanism
,”
Proceedings of Joint International Conference on Advanced Science and Technology
,
Hangzhou, China
,
Zhejiang University
, pp.
302
305
.
42.
Nishioka
,
M.
, and
Yoshizawa
,
M.
,
1995
, “
Direct Torque Compensation Cam Mechanisms
,”
Trans. Jpn. Soc. Mech. Eng. C
,
61
(
585
), pp.
2020
2024
.
43.
Nishioka
,
M.
,
1995
, “
State of the Art of Torque Compensation Cam Mechanisms
,”
Proceedings of the Ninth World Congress on Theory of Machines and Mechanisms
,
Milan, Italy
,
Aug. 29–Sept. 2
, pp.
713
717
.
44.
Nishioka
,
M.
,
1999
, “
Design of Torque Compensation Cam Using Measured Torque Distribution
,”
Proceedings of the 10th World Congress on the Theory of Machines and Mechanisms
,
Oulu, Finland
,
June 20–24
.
45.
Benedict
,
C. E.
,
Matthew
,
G. K.
, and
Tesar
,
D.
,
1971
, “
Torque Balancing of Machines by Sub-Unit Cam Systems
,”
Proceedings of the 2nd Applied Mechanism Conference
,
Stillwater, OK
, Paper No. 15, Oklahoma State University.
46.
Funk
,
W.
, and
Han
,
J.
,
1996
, “
On the Complete Balancing of the Inertia-Caused Input Torque for Plane Mechanisms
,”
Proceedings of the Design Engineering Technical Conference
,
Irvine, CA
,
Aug. 18–22
.
47.
Guilan
,
T.
,
Haibo
,
F.
, and
Weiyi
,
Z.
,
1999
, “
A New Method of Torque Compensation for High Speed Indexing Cam Mechanisms
,”
ASME J. Mech. Des.
,
121
(
2
), pp.
319
323
.
48.
Wu
,
C.-J.
, and
Angeles
,
J.
,
2001
, “
The Optimum Synthesis of en Elastic Torque-Compensating Cam Mechanism
,”
Mech. Mach. Theory
,
36
(
2
), pp.
245
259
.
49.
Lin
,
D.-Y.
,
Hou
,
B.-J.
, and
Lan
,
C.-C.
,
2017
, “
A Balancing Cam Mechanism for Minimizing the Torque Fluctuation of Engine Camshafts
,”
Mech. Mach. Theory
,
108
, pp.
160
175
.
50.
Arakelian
,
V.
, and
Briot
,
S.
,
2010
, “
Simultaneous Inertia Force/Moment Balancing and Torque Compensation of Slider-Crank Mechanisms
,”
J. Mech. Res. Commun.
,
37
(
2
), pp.
265
269
.
51.
Dresig
,
H.
, and
Holzweißig
,
F.
,
2004
,
Maschinendynamik
,
Springer
,
Berlin
, p.
526
.
52.
Yao
,
Y. A.
,
Yan
,
H. S.
, and
Zou
,
H. J.
,
2005
, “
Dynamic Design of Variable Speed Planar Linkages
,”
Chin. J. Mech. Eng.
,
18
(
1
), pp.
51
54
.
53.
Sun
,
Z.
,
Zhang
,
B.
,
Huang
,
J.
, and
Zhang
,
W. J.
,
2010
, “
On a Mechatronics Approach to Balancing of Robotic Mechanisms: Redundant Servo Motor
,”
Proceedings of the 5th International Conference on the Advanced Mechatronics
,
Osaka, Japan
,
Oct. 4–6
, pp.
675
680
.
54.
Sun
,
J.
, and
Yao
,
Y.
,
2010
, “
Integrated Design of an Active Torque Balancing Mechanism and a Planetary Gear Reducer
,”
J. Syst.Des. Dyn.
,
4
(
3
), pp.
391
405
.
55.
Sun
,
J.
, and
Yao
,
Y.
,
2011
, “
An Active Gear Balancer for Torque Compensation
,”
ASME J. Mech. Des.
,
133
(
1
), p.
014502
.
56.
Borras
,
J.
, and
Dollar
,
A. M.
,
2014
, “
Actuation Torque Reduction in Parallel Robots Using Joint Compliance
,”
ASME J. Mech. Rob.
,
6
(
2
), p.
021006
.
57.
Prakashah
,
H. N.
, and
Zhou
,
H.
,
2016
, “
Synthesis of Constant Torque Compliant Mechanisms
,”
ASME J. Mech. Rob.
,
8
(
6
), p.
064503
.
58.
Kim
,
B.
, and
Deshpande
,
A. D.
,
2014
, “
Design of Nonlinear Rotational Stiffness Using a Noncircular Pulley-Spring Mechanism
,”
ASME J. Mech. Rob.
,
6(4)
, p.
041009
.
59.
Zhang
,
J.
,
Shaw
,
A. D.
,
Amoozgar
,
M.
,
Friswell
,
M. I.
, and
Woods
,
B. K.
,
2019
, “
Bidirectional Spiral Pulley Negative Stiffness Mechanism for Passive Energy Balancing
,”
ASME J. Mech. Rob.
,
11
(
5
), p.
054502
.
60.
Korn
,
G. A.
, and
Korn
,
T. M.
,
1986
,
Mathematical Handbook for Scientists and Engineers
, 2nd ed.,
McGraw-Hill Book Company
,
New York
.
You do not currently have access to this content.