Abstract

Owing to advancements in robotics, researchers have been focusing on integrating humanoid robots into actual environments. Most humanoid robots are equipped with seven-degree-of-freedom (DoF) arms that allow them to be flexible in different scenarios. The controller of a 7-DoF robotic arm must select one solution among the infinite sets of solutions for a given inverse kinematics problem. To date, no suitable approach has been developed for identifying appropriate human-like postures for a robotic arm with an offset wrist configuration. In this paper, we propose a novel algorithm that considers the movement of the human arm to consistently find a suitable human-like posture. First, a one-class support vector machine model is employed to classify human-like postures. Then, the algorithm uses the redundancy characteristic of a 7-DoF robotic arm with a linear regression model to enhance the search of human-like postures. Finally, the proposed algorithm is demonstrated in the simulation.

References

1.
Mori
,
M.
,
MacDorman
,
K. F.
, and
Kageki
,
N.
,
2012
, “
The Uncanny Valley [From the Field]
,”
IEEE Rob. Autom. Mag.
,
19
(
2
), pp.
98
100
.
2.
Koppenborg
,
M.
,
Nickel
,
P.
,
Naber
,
B.
,
Lungfiel
,
A.
, and
Huelke
,
M.
,
2017
, “
Effects of Movement Speed and Predictability in Human–Robot Collaboration
,”
Hum. Factors Ergon. Manuf. Serv. Ind.
,
27
(
4
), pp.
197
209
.
3.
Rader
,
S.
,
Kaul
,
L.
,
Fischbach
,
H.
,
Vahrenkamp
,
N.
, and
Asfour
,
T.
,
2016,
Design of a High-Performance Humanoid Dual arm System with Inner Shoulder Joints
,”
2016 IEEE-RAS 16th International Conference on Humanoid Robots (Humanoids)
,
IEEE
, pp.
523
529
.
4.
Ghalamzan
,
E. A. M.
, and
Ragaglia
,
M.
,
2018
, “
Robot Learning From Demonstrations: Emulation Learning in Environments with Moving Obstacles
,”
Rob. Auton. Syst.
,
101
, pp.
45
56
.
5.
Chebotar
,
Y.
,
Hausman
,
K.
,
Zhang
,
M.
,
Sukhatme
,
G.
,
Schaal
,
S.
, and
Levine
,
S.
,
2017
, “
Combining Model-Based and Model-Free Updates for Trajectory-Centric Reinforcement Learning
,”
Proceedings of the 34th International Conference on Machine Learning
.
6.
Nenchev
,
D. N.
,
Tsumaki
,
Y.
, and
Takahashi
,
M.
,
2004,
Singularity-consistent Kinematic Redundancy Resolution for the SRS Manipulator
,”
2004 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (IEEE Cat. No. 04CH37566)
,
Sendai, Japan
,
Sept. 28–Oct.2
,
IEEE
, pp.
3607
3612
.
7.
Shimizu
,
M.
,
Kakuya
,
H.
,
Yoon
,
W.-K.
,
Kitagaki
,
K.
, and
Kosuge
,
K.
,
2008
, “
Analytical Inverse Kinematic Computation for 7-DOF Redundant Manipulators with Joint Limits and its Application to Redundancy Resolution
,”
IEEE Trans. Rob.
,
24
(
5
), pp.
1131
1142
.
8.
Yu
,
C.
,
Jin
,
M.
, and
Liu
,
H.
,
2012,
An Analytical Solution for Inverse Kinematic of 7-DOF Redundant Manipulators with Offset-Wrist
,”
2012 IEEE International Conference on Mechatronics and Automation
,
Chengdu, China
,
Aug. 5–8
,
IEEE
, pp.
92
97
.
9.
Dubey
,
R. V.
,
Euler
,
J. A.
, and
Babcock
,
S. M.
,
1991
, “
Real-Time Implementation of an Optimization Scheme for Seven-Degree-of-Freedom Redundant Manipulators
,”
IEEE Trans. Rob. Autom.
,
7
(
5
), pp.
579
588
.
10.
Siciliano
,
B.
,
Sciavicco
,
L.
,
Villani
,
L.
, and
Oriolo
,
G.
,
2010
,
Robotics: Modelling, Planning and Control
,
Springer Science & Business Media
,
New York
.
11.
Buss
,
S. R.
,
2004
, “
Introduction to Inverse Kinematics With Jacobian Transpose, Pseudoinverse and Damped Least Squares Methods
,”
IEEE J. Rob. Autom.
,
17
(
1–19
), p.
16
.
12.
Tchon
,
K.
,
2008
, “
Optimal Extended Jacobian Inverse Kinematics Algorithms for Robotic Manipulators
,”
IEEE Trans. Robotics
,
24
(
6
), pp.
1440
1445
.
13.
Wang
,
J.
,
Li
,
Y.
, and
Zhao
,
X.
,
2010
, “
Inverse Kinematics and Control of a 7-DOF Redundant Manipulator Based on the Closed-Loop Algorithm
,”
Int. J. Adv. Rob. Syst.
,
7
(
4
), p.
37
.
14.
Zanchettin
,
A. M.
,
Bascetta
,
L.
, and
Rocco
,
P.
,
2013
, “
Achieving Humanlike Motion: Resolving Redundancy for Anthropomorphic Industrial Manipulators
,”
IEEE Rob. Autom. Mag.
,
20
(
4
), pp.
131
138
.
15.
Brahmi
,
B.
,
Saad
,
M.
,
Rahman
,
M. H.
, and
Ochoa-Luna
,
C.
,
2017
, “
Cartesian Trajectory Tracking of a 7-DOF Exoskeleton Robot Based on Human Inverse Kinematics
,”
IEEE Trans. Syst. Man Cybern. Syst.
,
49
(
3
), pp.
600
611
.
16.
Zhao
,
J.
,
Xie
,
B.
, and
Song
,
C.
,
2014
, “
Generating Human-Like Movements for Robotic Arms
,”
Mech. Mach. Theory
,
81
, pp.
107
128
.
17.
Liu
,
W.
,
Chen
,
D.
, and
Steil
,
J.
,
2017
, “
Analytical Inverse Kinematics Solver for Anthropomorphic 7-DOF Redundant Manipulators with Human-Like Configuration Constraints
,”
J. Intell. Rob. Syst.
,
86
(
1
), pp.
63
79
.
18.
Su
,
H.
,
Enayati
,
N.
,
Vantadori
,
L.
,
Spinoglio
,
A.
,
Ferrigno
,
G.
, and
De Momi
,
E.
,
2018
, “
Online Human-Like Redundancy Optimization for Tele-Operated Anthropomorphic Manipulators
,”
Int. J. Adv. Rob. Syst.
,
15
(
6
), p.
1729881418814695
.
19.
Kim
,
S.
,
Gribovskaya
,
E.
, and
Billard
,
A.
,
2010,
Learning Motion Dynamics to Catch a Moving Object
,”
2010 10th IEEE-RAS International Conference on Humanoid Robots
,
IEEE
, pp.
106
111
.
20.
Yang
,
C.
,
Zeng
,
C.
,
Fang
,
C.
,
He
,
W.
, and
Li
,
Z.
,
2018
, “
A DMPS-Based Framework for Robot Learning and Generalization of Humanlike Variable Impedance Skills
,”
IEEE/ASME Trans. Mechatron.
,
23
(
3
), pp.
1193
1203
.
21.
Pedregosa
,
F.
,
Varoquaux
,
G.
,
Gramfort
,
A.
,
Michel
,
V.
,
Thirion
,
B.
,
Grisel
,
O.
,
Blondel
,
M.
,
Prettenhofer
,
P.
,
Weiss
,
R.
, and
Dubourg
,
V.
,
2011
, “
Scikit-learn: Machine Learning in Python
,”
J. Mach. Learn. Res.
,
12
, pp.
2825
2830
.
22.
Deng
,
Y.-H.
, and
Chang
,
J.-Y.
, “
Inverse Kinematics of a Humanoid Robotic Arm With Fixed Joint Method
,”
Information Storage and Processing Systems
,
American Society of Mechanical Engineers
, p.
V001T006A002
.
You do not currently have access to this content.