Abstract

The upper limb rehabilitation exoskeleton with cable-driven parallel structure has the advantages of light weight and large payload, etc. However, due to the non-rigid nature of the actuating cables and the different body shape of the wearer, the geometric parameters of the exoskeleton have a large error. The parameter identification of cable-driven exoskeleton is of great significance. An asynchronous self-identification method for the upper limb seven degree-of-freedom (DOF) cable-driven exoskeleton was proposed and used in a wearable multi-redundant exoskeleton. Asynchronous iteration eliminates the accumulation of joint errors. High identification reliability is achieved by selecting proper identification parameters and optimizing error model.With the method, the geometric parameters of the exoskeleton can be identified by using exoskeleton joint angle and cable length data. The experiment verifies that the success rate of parameter identification for different wearers is in line with expectations, and the control precision and stability of the prototype are greatly improved after parameter identification.

References

1.
Hogan
,
N.
,
Krebs
,
H. I.
,
Charnnarong
,
J.
,
Srikrishna
,
P.
, and
Sharon
,
A.
,
1992
, “
MIT-MANUS: a Workstation for Manual Therapy and Training. I
,”
Proceedings IEEE International Workshop on Robot and Human Communication
,
Bellingham, WA
, IEEE, pp.
161
165
.
2.
Lum
,
P. S.
,
Burgar
,
C. G.
,
Van der Loos
,
M.
,
Shor
,
P. C.
,
Majmundar
,
M.
, and
Yap
,
R.
,
2006
, “
MIME Robotic Device for Upper-Limb Neurorehabilitation in Subacute Stroke Subjects: A Follow-Up Study
,”
J. Rehab. Res. Dev.
,
43
(
5
), pp.
631
642
.
3.
Nef
,
T.
,
Guidali
,
M.
, and
Riener
,
R.
,
2009
, “
ARMin III–Arm Therapy Exoskeleton With An Ergonomic Shoulder Actuation
,”
Appl. Bionics Biomech.
,
6
(
2
), pp.
127
142
.
4.
Roderick
,
S.
,
Liszka
,
M.
, and
Carignan
,
C.
,
2005
, “
Design of An Arm Exoskeleton With Scapula Motion for Shoulder Rehabilitation
,”
ICAR’05. Proceedings of 12th International Conference on Advanced Robotics
,
Seatle, WA
,
July 18–19
, IEEE, pp.
524
531
.
5.
Christensen
,
S.
, and
Bai
,
S.
,
2018
, “
Kinematic Analysis and Design of a Novel Shoulder Exoskeleton Using a Double Parallelogram Linkage
,”
ASME J. Mech. Rob.
,
10
(
4
), p.
041008
.
6.
Perry
,
J. C.
,
Rosen
,
J.
, and
Burns
,
S.
,
2007
, “
Upper-limb Powered Exoskeleton Design
,”
IEEE/ASME Trans. Mechatron.
,
12
(
4
), pp.
408
417
.
7.
Sugar
,
T. G.
,
He
,
J.
,
Koeneman
,
E. J.
,
Koeneman
,
J. B.
,
Herman
,
R.
,
Huang
,
H.
, and
Schultz
,
R. S.
, et al.,
2007
, “
Design and Control of Rupert: A Device for Robotic Upper Extremity Repetitive Therapy
,”
IEEE. Trans. Neural. Syst. Rehabil. Eng.
,
15
(
3
), pp.
336
346
.
8.
Frisoli
,
A.
,
Chisari
,
C.
,
Sotgiu
,
E.
,
Procopio
,
C.
,
Fontana
,
M.
,
Rossi
,
B.
, and
Bergamasco
,
M.
,
2012
, “
Rehabilitation Training and Evaluation With the L-EXOS in Chronic Stroke
,”
International Conference on Smart Homes and Health Telematics
,
Tuscany, Italy
,
June 13–15
, Springer, pp.
242
245
.
9.
Balasubramanian
,
S.
,
Wei
,
R.
,
Perez
,
M.
,
Shepard
,
B.
,
Koeneman
,
E.
,
Koeneman
,
J.
, and
He
,
J.
,
2008
, “
RUPERT: An Exoskeleton Robot for Assisting Rehabilitation of Arm Functions
,”
2008 Virtual Rehabilitation
,
Vancouver, Canada
,
Aug. 25–27
, IEEE, pp.
163
167
.
10.
Spinks
,
G. M.
,
2016
, “
Stretchable Artificial Muscles From Coiled Polymer Fibers
,”
J. Mater. Res.
,
31
(
19
), pp.
2917
2927
.
11.
Yu
,
W.
, and
Rosen
,
J.
,
2013
, “
Neural PID Control of Robot Manipulators With Application to An Upper Limb Exoskeleton
,”
IEEE Trans. Cybern.
,
43
(
2
), pp.
673
684
.
12.
Lugo-Villeda
,
L. I.
,
Frisoli
,
A.
,
Sandoval-Gonzalez
,
O.
,
Padilla
,
M. A.
,
Parra-Vega
,
V.
,
Avizzano
,
C. A.
,
Ruffaldi
,
E.
, and
Bergamasco
,
M.
,
2009
, “
Haptic Guidance of Light-Exoskeleton for Arm-Rehabilitation Tasks
,”
RO-MAN 2009—The 18th IEEE International Symposium on Robot and Human Interactive Communication
,
Toyama, Japan
,
Sept. 27–30
, IEEE, pp.
903
908
.
13.
Yang
,
G.
,
Lin
,
W.
,
Kurbanhusen
,
M. S.
,
Pham
,
C. B.
, and
Yeo
,
S. H.
,
2005
, “
Kinematic Design of a 7-dof Cable-Driven Humanoid Arm: A Solution-in-Nature Approach
,”
Proceedings of the 2005 IEEE/ASME International Conference on Advanced Intelligent Mechatronics
,
Monterey, CA
,
July 24–28
, pp.
444
449
.
14.
Chen
,
W.
,
Cui
,
X.
,
Yang
,
G.
,
Chen
,
J.
, and
Jin
,
Y.
,
2014
, “
Self-Feedback Motion Control for Cable-Driven Parallel Manipulators
,”
Proc. Inst. Mech. Eng., Part C: J. Mech.
,
228
(
1
), pp.
77
89
.
15.
Brackbill
,
E. A.
,
Mao
,
Y.
,
Agrawal
,
S. K.
,
Annapragada
,
M.
, and
Dubey
,
V. N.
,
2009
, “
Dynamics and Control of a 4-dof Wearable Cable-Driven Upper Arm Exoskeleton
,”
2009 IEEE International Conference on Robotics and Automation
,
Kobe, Japan
,
May 12–17
, IEEE, pp.
2300
2305
.
16.
Mao
,
Y.
, and
Agrawal
,
S. K.
,
2012
, “
Transition From Mechanical Arm to Human Arm With CAREX: A Cable Driven Arm Exoskeleton (CAREX) for Neural Rehabilitation
,”
2012 IEEE International Conference on Robotics and Automation
,
Minnesota, MN
,
Aug. 13–17
, IEEE, pp.
2457
2462
.
17.
Mao
,
Y.
, and
Agrawal
,
S. K.
,
2012
, “
Design of a Cable-Driven Arm Exoskeleton (CAREX) for Neural Rehabilitation
,”
IEEE Trans. Rob.
,
28
(
4
), pp.
922
931
.
18.
Cui
,
X.
,
Chen
,
W.
,
Jin
,
X.
, and
Agrawal
,
S. K.
,
2017
, “
Design of a 7-dof Cable-Driven Arm Exoskeleton (carex-7) and a Controller for Dexterous Motion Training Or Assistance
,”
IEEE/ASME Trans. Mechatron.
,
22
(
1
), pp.
161
172
.
19.
Varziri
,
M. S.
, and
Notash
,
L.
,
2007
, “
Kinematic Calibration of a Wire-Actuated Parallel Robot
,”
Mech. Mach. Theory
,
42
(
8
), pp.
960
976
.
20.
Duan
,
X.
,
Qiu
,
Y.
,
Duan
,
Q.
, and
Du
,
J.
,
2014
, “
Calibration and Motion Control of a Cable-Driven Parallel Manipulator Based Triple-Level Spatial Positioner
,”
Adv. Mech. Eng.
,
6
(
5
), pp.
1
10
.
21.
Zhuang
,
H.
,
Roth
,
Z. S.
, and
Wang
,
K.
,
1994
, “
Robot Calibration by Mobile Camera Systems
,”
J. Rob. Syst.
,
11
(
3
), pp.
155
167
.
22.
Omodei
,
A.
,
Legnani
,
G.
, and
Adamini
,
R.
,
2000
, “
Three Methodologies for the Calibration of Industrial Manipulators: Experimental Results on a Scara Robot
,”
J. Rob. Syst.
,
17
(
6
), pp.
291
307
.
23.
dit Sandretto
,
J. A.
,
Trombettoni
,
G.
,
Daney
,
D.
, and
Chabert
,
G.
,
2014
, “
Certified Calibration of a Cable-Driven Robot Using Interval Contractor Programming
,”
Mech. Mach. Sci.
,
15
(
5
), pp.
209
217
.
24.
Shen
,
W.
,
Yang
,
G.
,
Zheng
,
T.
,
Wang
,
Y.
,
Yang
,
K.
, and
Fang
,
Z.
,
2020
, “
An Accuracy Enhancement Method for a Cable-Driven Continuum Robot With a Flexible Backbone
,”
IEEE Access
,
8
(
99
), pp.
37474
37481
.
25.
Miermeister
,
P.
, and
Pott
,
A.
,
2012
, “Auto Calibration Method for Cable-driven Parallel Robots Using Force Sensors,”
Latest Advances in Robot Kinematics
,
Springer
,
Netherlands
, pp.
269
276
.
26.
Zitzewitz
,
J.
, and
Fehlberg
,
L.
,
2013
,
Cable-Driven Parallel Robots
,
Springer
.
27.
Yuan
,
H.
,
You
,
X.
,
Zhang
,
Y.
,
Zhang
,
W.
, and
Xu
,
W.
,
2019
, “
A Novel Calibration Algorithm for Cable-Driven Parallel Robots With Application to Rehabilitation
,”
Appl. Sci.
,
9
(
11
), pp.
2182
2191
.
28.
Bai
,
S.
, and
Teo
,
M. Y.
,
2003
, “
Kinematic Calibration and Pose Measurement of a Medical Parallel Manipulator by Optical Position Sensors
,”
J. Rob. Syst.
,
20
(
4
), pp.
201
209
.
29.
Huang
,
T.
,
Bai
,
P.
,
Mei
,
J.
, and
Chetwynd
,
D. G.
,
2016
, “
Tolerance Design and Kinematic Calibration of a Four-Degrees-of-Freedom Pick-and-Place Parallel Robot
,”
ASME J. Mech. Rob.
,
8
(
6
), p.
061018
.
30.
Qian
,
S.
,
Bao
,
K.
,
Zi
,
B.
, and
Wang
,
N.
,
2018
, “
Kinematic Calibration of a Cable-Driven Parallel Robot for 3D Printing
,”
Sensors
,
18
(
9
), pp.
2898
2921
.
31.
Mustafa
,
S. K.
,
Yang
,
G.
,
Yeo
,
S. H.
,
Lin
,
W.
, and
Chen
,
I.-M.
,
2008
, “
Self-Calibration of a Biologically Inspired 7 DOF Cable-Driven Robotic Arm
,”
IEEE/ASME Trans. Mechatron.
,
13
(
1
), pp.
66
75
.
32.
Chen
,
Q.
,
Chen
,
W.
,
Yang
,
G.
, and
Liu
,
R.
,
2013
, “
An Integrated Two-Level Self-Calibration Method for a Cable-Driven Humanoid Arm
,”
IEEE Trans. Autom. Sci. Eng.
,
10
(
2
), pp.
380
391
.
33.
Cui
,
X.
,
Chen
,
W.
,
Zhang
,
J.
, and
Wang
,
J.
,
2015
, “
Note: Model-Based Identification Method of a Cable-Driven Wearable Device for Arm Rehabilitation
,”
Rev. Sci. Instrum.
,
86
(
9
), p.
096107
.
34.
Chen
,
W.
,
Li
,
Z.
,
Cui
,
X.
,
Zhang
,
J.
, and
Bai
,
S.
,
2019
, “
Mechanical Design and Kinematic Modeling of a Cable-Driven Arm Exoskeleton Incorporating Inaccurate Human Limb Anthropomorphic Parameters
,”
Sensors
,
19
(
20
), pp.
4461
4474
.
35.
Ming
,
A.
, and
Higuchi
,
T.
,
1994
, “
Study on Multiple Degree-of-Freedom Positioning Mechanism Using Wires. I: Concept, Design and Control
,”
Int. J. Jpn. Soc. Precis. Eng.
,
28
(
2
), pp.
131
138
.
36.
Behling
,
R.
, and
Fischer
,
A.
,
2012
, “
A Unified Local Convergence Analysis of Inexact Constrained Levenberg-Marquardt Methods
,”
Optim. Lett.
,
6
(
5
), pp.
927
940
.
37.
Menq
,
C. H.
,
Borm
,
J. H.
, and
Lai
,
J. Z.
,
1989
, “
Identification and Observability Measure of a Basis Set of Error Parameters in Robot Calibration
,”
ASME J. Mech. Des.
,
111
(
4
), pp.
513
518
.
38.
Borm
,
J. H.
, and
Meng
,
C. H.
,
1991
, “
Determination of Optimal Measurement Configurations for Robot Calibration Based on Observability Measure
,”
Int. J. Rob. Res.
,
10
(
1
), pp.
51
63
.
39.
Sun
,
Y.
, and
Hollerbach
,
J. M.
,
2008
, “
Observability Index Selection for Robot Calibration
,”
IEEE International Conference on Robotics and Automation, ICRA 2008
,
Pasadena, CA
,
May 19–23
.
You do not currently have access to this content.