Abstract

Assessing the food texture via mastication is important for advancing knowledge of food properties so as to develop favorable and healthy food products. Oral processing of food by robots can enable an in vitro assessment of food texture by simulating human mastication objectively. In this study, a chewing robot is developed to mimic the rhythmic motion of the molars to enable controllable chewing kinematics and a biomimetic oral environment. The robotic chewing is realized using a 3 degree-of-freedom (DOF) linkage mechanism, which recreates the molar grinding movement based on molar trajectories and chewing cycle durations previously reported in the literature. Moreover, a soft pneumatically actuated cavity is developed to provide a space to contain and reposition the food between occlusions. To regulate the robotic chewing having variable molar trajectories and chewing durations, the mathematical relationship of the linkage’s actuators and molar movements is investigated for the purpose of motion analysis and control. Accordingly, the design of the robot in terms of linkage, oral cavity, and mechatronics system is performed. The built robot is validated by tracing a planned variable molar trajectory while chewing peanuts. The performance of robot chewing is validated by demonstrating the ability of the robot to chew the peanuts similar to that by human through comparison of peanut particle size distributions (PSDs) and particle median size diameters.

References

1.
Chen
,
J.
, and
Rosenthal
,
A.
,
2015
,
Modifying Food Texture
,
J.
Chen
, and
A.
Rosenthal
, eds.,
Woodhead Publishing
,
Sawston, UK
, pp.
3
24
.
2.
Chen
,
J.
, and
Lolivret
,
L.
,
2011
, “
The Determining Role of Bolus Rheology in Triggering a Swallowing
,”
Food Hydrocolloids
,
25
(
3
), pp.
325
332
.
3.
Duconseille
,
A.
,
François
,
O.
,
Bruno
,
P.
,
Céline
,
L.
,
Marie-Agnès
,
P.
, and
Martine
,
H.
,
2019
, “
Measuring the Effects of in Vitro Mastication on Bolus Granulometry of Shredded Meat: A Proposal for a New Methodological Procedure
,”
Food Res. Int.
,
116
, pp.
1266
1273
.
4.
Chen
,
J.
,
2014
, “
Food Oral Processing: Some Important Underpinning Principles of Eating and Sensory Perception
,”
Food Struct.
,
1
(
2
), pp.
91
105
.
5.
Murray
,
J. M.
,
Delahunty
,
C. M.
, and
Baxter
,
I. A.
,
2001
, “
Descriptive Sensory Analysis: Past, Present and Future
,”
Food Res. Int.
,
34
(
6
), pp.
461
471
.
6.
Morell
,
P.
,
Hernando
,
I.
, and
Fiszman
,
S. M.
,
2013
, “
Understanding the Relevance of In-Mouth Food Processing. A Review of In Vitro Techniques
,”
Trends Food Sci. Technol.
,
35
(
1
), pp.
18
31
.
7.
Xu
,
W.
, and
Bronlund
,
J. E.
,
2010
,
Mastication Robots
,
W.
Xu
, and
J. E.
Bronlund
, eds.,
Springer
,
Berlin/Heidelberg
, pp.
207
236
.
8.
Rolle
,
L.
,
Siret
,
R.
,
Segade
,
S. R.
,
Maury
,
C.
,
Gerbi
,
V.
, and
Jourjon
,
F.
,
2012
, “
Instrumental Texture Analysis Parameters as Markers of Table-Grape and Winegrape Quality: A Review
,”
Am. J. Enol. Vitic.
,
63
(
1
), pp.
11
28
.
9.
Mishellany-Dutour
,
A.
,
Peyron
,
M.
,
Croze
,
J.
,
François
,
O.
,
Hartmann
,
C.
,
Alric
,
M.
, and
Woda
,
A.
,
2011
, “
Comparison of Food Boluses Prepared In Vivo and by the AM2 Mastication Simulator
,”
Food Qual. Preference
,
22
(
4
), pp.
326
331
.
10.
Chen
,
L.
, and
Opara
,
U. L.
,
2013
, “
Approaches to Analysis and Modeling Texture in Fresh and Processed Foods—A Review
,”
J. Food Eng.
,
119
(
3
), pp.
497
507
.
11.
Peyron
,
M.
, and
Woda
,
A.
,
2016
, “
An Update About Artificial Mastication
,”
Curr. Opin. Food Sci.
,
9
, pp.
21
28
.
12.
Lepley
,
C. R.
,
Throckmorton
,
G. S.
,
Ceen
,
R. F.
, and
Buschang
,
P. H.
,
2011
, “
Relative Contributions of Occlusion, Maximum Bite Force, and Chewing Cycle Kinematics to Masticatory Performance
,”
Am. J. Orthod. Dentofacial Orthop.
,
139
(
5
), pp.
606
613
.
13.
Shimada
,
A.
,
Tanaka
,
M.
,
Yamashita
,
R.
,
Noguchi
,
K.
,
Torisu
,
T.
,
Yamabe
,
Y.
,
Fujii
,
H.
, and
Murata
,
H.
,
2008
, “
Automatic Regulation of Occlusal Force Because of Hardness-Change of the Bite Object
,”
J. Oral Rehabil.
,
35
(
1
), pp.
12
19
.
14.
Shimada
,
A.
,
Yamabe
,
Y.
,
Torisu
,
T.
,
Baad-Hansen
,
L.
,
Murata
,
H.
, and
Svensson
,
P.
,
2012
, “
Measurement of Dynamic Bite Force During Mastication
,”
J. Oral Rehabil.
,
39
(
5
), pp.
349
356
.
15.
Miyawaki
,
S.
,
Ohkochi
,
N.
,
Kawakami
,
T.
, and
Sugimura
,
M.
,
2000
, “
Effect of Food Size on the Movement of the Mandibular First Molars and Condyles During Deliberate Unilateral Mastication in Humans
,”
J. Dent. Res.
,
79
(
7
), pp.
1525
1531
.
16.
Foster
,
K. D.
,
Woda
,
A.
, and
Peyron
,
M. A.
,
2006
, “
Effect of Texture of Plastic and Elastic Model Foods on the Parameters of Mastication
,”
J. Neurophysiol.
,
95
(
6
), pp.
3469
3479
.
17.
Kitashima
,
F.
,
Tomonari
,
H.
,
Kuninori
,
T.
,
Uehara
,
S.
, and
Miyawaki
,
S.
,
2015
, “
Modulation of the Masticatory Path at the Mandibular First Molar Throughout the Masticatory Sequence of a Hard Gummy Jelly in Normal Occlusion
,”
Cranio
,
33
(
4
), pp.
263
271
.
18.
Woda
,
A.
,
Foster
,
K.
,
Mishellany
,
A.
, and
Peyron
,
M. A.
,
2006
, “
Adaptation of Healthy Mastication to Factors Pertaining to the Individual or to the Food
,”
Physiol. Behav.
,
89
(
1
), pp.
28
35
.
19.
Fontijn-Tekamp
,
F. A.
,
Slagter
,
A. P.
,
Van ‘T Hof
,
M. A.
,
Witter
,
D. J.
,
Kalk
,
W.
, and
Jansen
,
J. A.
,
2000
, “
Biting and Chewing in Overdentures, Full Dentures, and Natural Dentitions
,”
J. Dent. Res.
,
79
(
7
), pp.
1519
1524
.
20.
Takanobu
,
H.
,
Takanishi
,
A.
, and
Kato
,
I.
,
1993
, “
Design of a Mastication Robot Mechanism Using a Human Skull Model
,”
Proceedings of 1993 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS '93)
,
Yokohama, Japan
,
July 26–30
, IEEE, Vol. 1, pp.
203
208
.
21.
Xu
,
W. L.
,
Pap
,
J.-
, and
Bronlund
,
J.
,
2008
, “
Design of a Biologically Inspired Parallel Robot for Foods Chewing
,”
IEEE Trans. Ind. Electron.
,
55
(
2
), pp.
832
841
.
22.
Narayanan
,
M. S.
,
Kannan
,
S.
,
Zhou
,
X.
,
Mendel
,
F.
, and
Krovi
,
V.
,
2011
, “
Parallel Architecture Manipulators for Use in Masticatory Studies
,”
Int. J. Intell. Mechatron. Robot.
,
1
(
4
), pp.
100
122
.
23.
Meullenet
,
J.-
, and
Gandhapuneni
,
R. K.
,
2006
, “
Development of the BITE Master II and Its Application to the Study of Cheese Hardness
,”
Physiol. Behav.
,
89
(
1
), pp.
39
43
.
24.
Salles
,
C.
,
Tarrega
,
A.
,
Mielle
,
P.
,
Maratray
,
J.
,
Gorria
,
P.
,
Liaboeuf
,
J.
, and
Liodenot
,
J.-J.
,
2007
, “
Development of a Chewing Simulator for Food Breakdown and the Analysis of In Vitro Flavor Compound Release in a Mouth Environment
,”
J. Food Eng.
,
82
(
2
), pp.
189
198
.
25.
Xu
,
W. L.
,
Lewis
,
D.
,
Bronlund
,
J. E.
, and
Morgenstern
,
M. P.
,
2008
, “
Mechanism, Design and Motion Control of a Linkage Chewing Device for Food Evaluation
,”
Mech. Mach. Theory
,
43
(
3
), pp.
376
389
.
26.
Sun
,
C.
,
Xu
,
W. L.
,
Bronlund
,
J. E.
, and
Morgenstern
,
M.
,
2014
, “
Dynamics and Compliance Control of a Linkage Robot for Food Chewing
,”
IEEE Trans. Ind. Electron.
,
61
(
1
), pp.
377
386
.
27.
Woda
,
A.
,
Mishellany-Dutour
,
A.
,
Batier
,
L.
,
François
,
O.
,
Meunier
,
J.-P.
,
Reynaud
,
B.
,
Alric
,
M.
, and
Peyron
M.-A.
,
2010
, “
Development and Validation of a Mastication Simulator
,”
J. Biomech.
,
43
(
9
), pp.
1667
1673
.
28.
Lee
,
S.-J.
,
Kim
,
B.-K.
,
Chun
,
Y.-G.
, and
Park
,
D.-J.
,
2018
, “
Design of Mastication Robot With Life-Sized Linear Actuator of Human Muscle and Load Cells for Measuring Force Distribution on Teeth
,”
Mechatronics
,
51
, pp.
127
136
.
29.
Chen
,
B.
,
Xu
,
W.
, and
Dhupia
,
J.
,
2018
, “
Dynamic Simulation for the Design of an Adjustable Linkage Mechanism for a Chewing Robot
,”
25th International Conference on Mechatronics and Machine Vision in Practice (M2VIP)
,
Stuttgart, Germany
,
Nov. 20–22
, IEEE, pp.
85
90
.
30.
Steck
,
D.
,
Qu
,
J.
,
Kordmahale
,
S. B.
,
Tscharnuter
,
D.
,
Muliana
,
A.
, and
Kameoka
,
J.
,
2019
, “
Mechanical Responses of Ecoflex Silicone Rubber: Compressible and Incompressible Behaviors
,”
J. Appl. Polym. Sci.
,
136
(
5
), p.
47025
.
31.
Mao
,
Q.
,
Sun
,
Y.
,
Wang
,
L.
,
Yang
,
L.
,
Huang
,
B.
,
Chen
,
F.
, and
Guo
,
X.
,
2015
, “
Particle Size Distribution of Food Boluses and Validation of Simulation During Artificial Indenter Crushing
,”
Int. J. Food Eng.
,
11
(
4
), pp.
457
466
.
32.
Lopez-Sanchez
,
P.
,
Chapara
,
V.
,
Schumm
,
S.
, and
Farr
,
R.
,
2012
, “
Shear Elastic Deformation and Particle Packing in Plant Cell Dispersions
,”
Food Biophys.
,
7
(
1
), pp.
1
14
.
33.
Jalabert-Malbos
,
M.-L.
,
Mishellany-Dutour
,
A.
,
Woda
,
A.
, and
Peyron
,
M.-A.
,
2007
, “
Particle Size Distribution in the Food Bolus After Mastication of Natural Foods
,”
Food Qual. Preference
,
18
(
5
), pp.
803
812
.
34.
Eberhard
,
L.
,
Schneider
,
S.
,
Eiffler
,
C.
,
Kappel
,
S.
, and
Giannakopoulos
,
N. N.
,
2015
, “
Particle Size Distributions Determined by Optical Scanning and by Sieving in the Assessment of Masticatory Performance of Complete Denture Wearers
,”
Clin. Oral Investig.
,
19
(
2
), pp.
429
436
.
You do not currently have access to this content.