Abstract

With the rapid expansion of older adult populations around the world, mobility impairment is becoming an increasingly challenging issue. For the assistance of individuals with mobility impairments, there are two major types of tools in the current practice, including the passive (unpowered) walking aids (canes, walkers, rollators, etc.) and wheelchairs (powered and unpowered). Despite their extensive use, there are significant weaknesses that affect their effectiveness in daily use, especially when challenging uneven terrains are encountered. To address these issues, the authors developed a novel robotic platform intended for the assistance of mobility-challenged individuals. Unlike the existing assistive robots serving similar purposes, the proposed robot, namely, quadrupedal human-assistive robotic platform (Q-HARP), utilizes legged locomotion to provide an unprecedented potential to adapt to a wide variety of challenging terrains, many of which are common in people’s daily life (e.g., roadside curbs and the few steps leading to a front door). In this paper, the design of the robot is presented, including the overall structure of the robot and the design details of the actuated robotic leg joints. For the motion control of the robot, a joint trajectory generator is formulated, with the purpose of generating a stable walking gait to provide reliable support to its human user in the robot’s future application. The Q-HARP robot and its control system were experimentally tested, and the results demonstrated that the robot was able to provide a smooth gait during walking.

References

1.
Center for Disease Control and Prevention and the Merck Company Foundation
,
2007
,
The State of Aging and Health in America 2007
,
Whitehouse Station, NJ
.
2.
Bherer
,
L.
,
Erickson
,
K. I.
, and
Liu-Ambrose
,
T.
,
2013
, “
A Review of the Effects of Physical Activity and Exercise on Cognitive and Brain Functions in Older Adults
,”
J. Aging Res.
,
2013
, p.
657508
.
3.
Booth
,
F. W.
,
Roberts
,
C. K.
, and
Laye
,
M. J.
,
2012
, “
Lack of Exercise is a Major Cause of Chronic Disease
,”
Compr. Physiol.
,
2
(
2
), pp.
1143
1211
.
4.
Howe
,
T. E.
,
Rochester
,
L.
,
Neil
,
F.
,
Skelton
,
D. A.
, and
Ballinger
,
C.
,
2011
, “
Exercise for Improving Balance in Older People
,”
Cochrane Database Syst. Rev.
,
11
, p.
CD004963
.
5.
Gine-Garriga
,
M.
,
Roque-Figuls
,
M.
,
Coll-Planas
,
L.
,
Sitja-Rabert
,
M.
, and
Salva
,
A.
,
2013
, “
Physical Exercise Interventions for Improving Performance-Based Measures of Physical Function in Community-Dwelling, Frail Older Adults: A Systematic Review and Meta-Analysis
,”
Arch. Phys. Med. Rehabil.
,
95
(
4
), pp.
753
769
.
6.
Deandrea
,
S.
,
Lucenteforte
,
E.
,
Bravi
,
F.
,
Foschi
,
R.
,
La Vecchia
,
C.
, and
Negri
,
E.
,
2010
, “
Risk Factors for Falls in Community-Dwelling Older People: A Systematic Review and Meta-Analysis
,”
Epidemiology
,
21
(
5
), pp.
658
668
.
7.
Webster
,
J.
, and
Murphy
,
D.
,
2018
,
Atlas of Orthoses and Assistive Devices
, 5th ed.,
Elsevier
,
New York
.
8.
Liu
,
H.
,
2009
, “
Assessment of Rolling Walkers Used by Older Adults in Senior-Living Communities
,”
Geriatr. Gerontol. Int.
,
9
(
2
), pp.
124
130
.
9.
Miyasike-daSilva
,
V.
,
Tung
,
J. Y.
,
Zabukovec
,
J. R.
, and
Mcllroy
,
W. E.
,
2013
, “
Use of Mobility Aids Reduces Attentional Demand in Challenging Walking Conditions
,”
Gait Posture
,
37
(
2
), pp.
287
289
.
10.
Li
,
C.
,
Chen
,
C.
,
Chen
,
Y.
,
Chang
,
C.
, and
Tsai
,
K.
,
2015
, “
Biomechanical Evaluation of a Novel Wheelchair Backrest for Elderly People
,”
Biomed. Eng. Online
,
14
, pp.
1
14
.
11.
Spenko
,
M.
,
Yu
,
H.
, and
Dubowsky
,
S.
,
2006
, “
Robotic Personal Aids for Mobility and Monitoring for the Elderly
,”
IEEE Trans. Neural Syst. Rehabil. Eng.
,
14
(
3
), pp.
344
351
.
12.
Ji
,
J.
,
Guo
,
S.
,
Xi
,
F.
, and
Zhang
,
L.
,
2020
, “
Design and Analysis of a Smart Rehabilitation Walker With Passive Pelvic Mechanism
,”
ASME J. Mech. Rob.
,
12
(
3
), p.
031007
.
13.
Lacey
,
G.
,
Namara
,
S. M.
, and
Dawson-Howe
,
K. M.
,
1998
, “Personal Adaptive Mobility Aid for the Infirm and Elderly Blind,”
Assistive Technology and Artificial Intelligence
,
V. O.
Mittal
,
H. A.
Yanco
,
J.
Aronis
, and
R.
Simpson
, eds.,
Springer
,
Berlin/Heidelberg
, pp.
211
220
.
14.
Namara
,
S. M.
, and
Lacey
,
G.
,
2000
, “
A Smart Walker for the Frail Visually Impaired
,”
IEEE International Conference on Robotics and Automation
,
San Francisco, CA, 2
, pp.
1354
1359
.
15.
Lacey
,
G.
, and
Namara
,
S. M.
,
2000
, “
User Involvement in the Design and Evaluation of a Smart Mobility Aid
,”
J. Rehabil. Res. Dev.
,
37
(
6
), pp.
709
723
.
16.
Garcia
,
E.
,
Arevalo
,
J. C.
,
Cestari
,
M.
, and
Sanz-Merodio
,
D.
,
2015
, “
On the Technological Instantiation of a Biomimetic Leg Concept for Agile Quadrupedal Locomotion
,”
ASME J. Mech. Rob.
,
7
(
3
), p.
031005
.
17.
Raibert
,
M.
,
Blankespoor
,
K.
,
Nelson
,
G.
, and
Playter
,
R.
,
2008
, “
BigDog, the Rough-Terrain Quadruped Robot
,”
IFAC Proc. Vol.
,
41
(
2
), pp.
10822
10825
.
18.
Fujita
,
M.
,
2001
, “
AIBO: Toward the Era of Digital Creatures
,”
Int. J. Rob. Res.
,
20
(
10
), pp.
781
794
.
19.
Shkolnik
,
A.
,
Levashov
,
M.
,
Manchester
,
I. R.
, and
Tedrake
,
R.
,
2011
, “
Bounding on Rough Terrain With the LittleDog Robot
,”
Int. J. Rob. Res.
,
30
(
2
), pp.
192
215
.
20.
Shen
,
T.
,
Afsar
,
M. R.
,
Haque
,
M. R.
,
McClain
,
E.
,
Meek
,
S.
, and
Shen
,
X.
,
2019
, “
A Human-Assistive Robotic Platform With Quadrupedal Locomotion
,”
Proceedings of IEEE International Conference on Rehabilitation Robotics
,
Toronto, Canada
,
June 24–28
, pp.
305
310
.
21.
Shen
,
T.
,
Afsar
,
M. R.
,
Zhang
,
H.
,
Ye
,
C.
, and
Shen
,
X.
,
2018
, “
Development of a Motorized Robotic Walker Guided by an Image Processing System for Human Walking Assistance and Rehabilitation
,”
Proceedings of ASME 2018 Dynamic Systems and Control Conference
,
Atlanta, GA
,
Sept. 30–Oct. 3
, p.
V001T07A009
.
22.
Shen
,
T.
,
Afsar
,
M. R.
,
Zhang
,
H.
,
Ye
,
C.
, and
Shen
,
X.
,
2020
, “
A 3D Computer Vision-Guided Robotic Companion for Non-Contact Human Assistance and Rehabilitation
,”
J. Intell. Rob. Syst.
,
100
(
3–4
), pp.
911
923
.
23.
Zelik
,
K. E.
, and
Honert
,
E. C.
,
2018
, “
Ankle and Foot Power in Gait Analysis: Implications for Science, Technology and Clinical Assessment
,”
J. Biomech.
,
75
, pp.
1
12
.
24.
Heim
,
I.
,
Zheng
,
H.
, and
Shen
,
X.
,
2015
, “
A Quadruped Robot Powered with Pneumatic Actuators
,”
Proceedings of the ASME 2015 International Mechanical Engineering Congress & Exposition
,
Houston,
TX, Paper No. IMECE2015-51004.
25.
Bartel
,
D. L.
,
Davy
,
D. T.
, and
Keaveny
,
T. M.
,
2006
,
Orthopaedic Biomechanics: Mechanics and Design in Musculoskeletal Systems
, 1st ed.,
Pearson
,
New York
.
26.
Wu
,
M.
,
Haque
,
M. R.
, and
Shen
,
X.
,
2017
, “
Obtaining Natural sit-to-Stand Motion With a Biomimetic Controller for Powered Knee Prostheses
,”
J. Healthc. Eng.
,
2017
.
27.
Pongas
,
D.
,
Mistry
,
M.
, and
Schaal
,
S.
,
2007
, “
A Robust Quadruped Walking Gait for Traversing Rough Terrain
,”
Proceedings of 2007 IEEE International Conference on Robotics and Automation
,
Roma, Italy
,
Apr. 10–14
, pp.
1474
1479
.
28.
Perry
,
J.
,
1992
,
Gait Analysis: Normal and Pathological Function
,
Slack Inc.
,
Thorofare, NJ
.
29.
Lee
,
T.-T.
, and
Shin
,
C.-L.
,
1986
, “
A Study of the Gait Control of a Quadruped Walking Vehicle
,”
IEEE J. Rob. Autom.
,
2
(
2
), pp.
61
69
.
30.
Santos
,
P. G. D.
,
Garcia
,
E.
, and
Estremera
,
J.
,
2006
,
Quadrupedal Locomotion—An Introduction to the Control of Four-Legged Robots
,
Springer-Verlag
,
London
.
31.
Owaki
,
D.
, and
Ishiguro
,
A.
,
2017
, “
A Quadruped Robot Exhibiting Spontaneous Gait Transitions From Walking to Trotting to Galloping
,”
Sci. Rep.
,
7
(
1
), pp.
1
10
.
32.
Rossi
,
C.
, and
Savino
,
S.
,
2013
, “
Robot Trajectory Planning by Assigning Positions and Tangential Velocities
,”
Rob. Comput. Integr. Manuf.
,
29
(
1
), pp.
139
156
.
33.
Su
,
B.
, and
Zou
,
L.
,
2012
, “
Manipulator Trajectory Planning Based on the Algebraic-Trigonometric Hermite Blended Interpolation Spline
,”
Procedia Eng.
,
29
, pp.
2093
2097
.
34.
Wang
,
X.
,
Duan
,
X.
,
Huang
,
Q.
,
Zhao
,
H.
,
Chen
,
Y.
, and
Yu
,
H.
,
2011
, “
Kinematics and Trajectory Planning of a Supporting Medical Manipulator for Vascular Interventional Surgery
,”
Proceedings of the 2011 IEEE/ICME International Conference on Complex Medical Engineering
,
Harbin, Heilongjiang, China
,
May 22–25
, pp.
406
411
.
35.
Kitagawa
,
N.
, and
Ogihara
,
N.
,
2016
, “
Estimation of Foot Trajectory During Human Walking by a Wearable Inertial Measurement Unit Mounted to the Foot
,”
Gait Posture
,
45
, pp.
110
114
.
36.
McClain
,
E. W.
, and
Meek
,
S.
,
2018
, “
Determining Optimal Gait Parameters for a Statically Stable Walking Human Assistive Quadruped Robot
,”
2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
,
Madrid, Spain
,
Oct. 1–5
, pp.
1751
1756
.
37.
Ziegler
,
J. G.
, and
Nichols
,
N. B.
,
1993
, “
Optimum Setting for Automatic Controllers
,”
ASME J. Dyn. Syst., Meas., Control
,
115
(
2B
), pp.
220
222
.
You do not currently have access to this content.