Abstract

A foot-driven rehabilitation mechanism is suitable for home healthcare due to its advantages of simplicity, effectiveness, small size, and low price. However, most of the existing studies on lower limb rehabilitation movement only consider the trajectory of the ankle joint and ignore the influence of its posture angle, which makes it difficult to ensure the rotation requirements of the ankle joint and achieve a better rehabilitation effect. Aiming at the shortcomings of the current research, this article proposes a new single degree-of-freedom (DOF) configuration that uses a noncircular gear train to constrain the three revolute joints (3R) open-chain linkage and expounds its dimensional synthesis method. Then, a parameter optimization model of the mechanism is established, and the genetic algorithm is used to optimize the mechanism parameters. According to the eight groups of key poses and position points of the ankle joint and the toe, the different configurations of the rehabilitation mechanism are synthesized and compared, and it is concluded that the newly proposed 3R open-chain noncircular gear-linkage mechanism exhibits better performance. Finally, combined with the requirements of rehabilitation training, a lower limb rehabilitation training device is designed based on this new configuration, and a prototype is developed and tested. The test results show that the device can meet the requirements of the key position points and posture angles of the ankle joint and the toe and verify the correctness of the proposed dimensional synthesis and optimization methods.

References

1.
Meng
,
W.
,
Liu
,
Q.
,
Zhou
,
Z. D.
,
Ai
,
Q. S.
,
Sheng
,
B.
, and
Xie
,
S. Q.
,
2015
, “
Recent Development of Mechanisms and Control Strategies for Robot-Assisted Lower Limb Rehabilitation
,”
Mechatronics
,
31
(
10
), pp.
132
145
.
2.
Benjamin
,
E. J.
,
Blaha
,
M. J.
,
Chiuve
,
S. E.
,
Cushman
,
M.
,
Das
,
S. R.
,
Deo
,
R.
,
de Ferranti
,
S. D.
,
Floyd
,
J.
,
Fornage
,
M.
,
Gillespie
,
C.
,
Isasi
,
C. R.
,
Jiménez
,
M. C.
,
Jordan
,
L. C.
,
Judd
,
S. E.
,
Lackland
,
D.
,
Lichtman
,
J. H.
,
Lisabeth
,
L.
,
Liu
,
S.
,
Longenecker
,
C. T.
,
Mackey
,
R. H.
,
Matsushita
,
K.
,
Mozaffarian
,
D.
,
Mussolino
,
M. E.
,
Nasir
,
K.
,
Neumar
,
R. W.
,
Palaniappan
,
L.
,
Pandey
,
D. K.
,
Thiagarajan
,
R. R.
,
Reeves
,
M. J.
,
Ritchey
,
M.
,
Rodriguez
,
C. J.
,
Roth
,
G. A.
,
Rosamond
,
W. D.
,
Sasson
,
C.
,
Towfighi
,
A.
,
Tsao
,
C. W.
,
Turner
,
M. B.
,
Virani
,
S. S.
,
Voeks
,
J. H.
,
Willey
,
J. Z.
,
Wilkins
,
J. T.
,
Wu
,
J. H.
,
Alger
,
H. M.
,
Wong
,
S. S.
, and
Muntner
,
P.
,
2017
, “
Heart Disease and Stroke Statistics-2017 Update: A Report From the American Heart Association
,”
Circulation
,
135
(
10
), pp.
e146
e603
.
3.
Mehrholz
,
J.
,
Thomas
,
S.
,
Werner
,
C.
,
Kugler
,
J.
,
Pohl
,
M.
, and
Elsner
,
B.
,
2017
, “
Electromechanical-Assisted Training for Walking After Stroke
,”
Cochrane Database Syst. Rev.
,
5
(
5
), p.
CD006185
.
4.
Wang
,
W. Q.
,
Hou
,
Z. G.
,
Tong
,
L. N.
,
Zhang
,
F.
,
Chen
,
Y. X.
, and
Tan
,
M.
,
2014
, “
A Novel Leg Orthosis for Lower Limb Rehabilitation Robots of the Sitting/Lying Type
,”
Mech. Mach. Theory
,
74
(
4
), pp.
337
353
.
5.
Ji
,
J. C.
,
Guo
,
S.
,
Xi
,
F. F.
, and
Zhang
,
L. G.
,
2020
, “
Design and Analysis of a Smart Rehabilitation Walker With Passive Pelvic Mechanism
,”
ASME J. Mech. Rob.
,
12
(
3
), p.
031007
.
6.
Hassan
,
M.
,
Kadone
,
H.
,
Suzuki
,
K.
, and
Sankai
,
Y.
,
2014
, “
Wearable Gait Measurement System With an Instrumented Cane for Exoskeleton Control
,”
Sensors
,
14
(
1
), pp.
1705
1722
.
7.
Banala
,
S. K.
,
Kim
,
S. H.
,
Agrawal
,
S. K.
, and
Scholz
,
J. P.
,
2009
, “
Robot Assisted Gait Training With Active Leg Exoskeleton (ALEX)
,”
IEEE Trans. Neural Syst. Rehabil. Eng.
,
17
(
1
), pp.
2
8
.
8.
Van Kammen
,
K.
,
Boonstra
,
A. M.
,
van der Woude
,
L. H. V.
,
Reinders-Messelink
,
H. A.
, and
den Otter
,
R.
,
2016
, “
The Combined Effects of Guidance Force, Bodyweight Support and Gait Speed on Muscle Activity During Able-Bodied Walking in the Lokomat
,”
Clin. Biomech.
,
36
(
7
), pp.
65
73
.
9.
Shi
,
D.
,
Zhang
,
W. X.
,
Zhang
,
W.
, and
Ding
,
X. L.
,
2019
, “
A Review on Lower Limb Rehabilitation Exoskeleton Robots
,”
Chin. J. Mech. Eng.
,
32
(
1
), p.
74
.
10.
Westlake
,
K. P.
, and
Patten
,
C.
,
2009
, “
Pilot Study of Lokomat Versus Manual-Assisted Treadmill Training for Locomotor Recovery Post-Stroke
,”
J. Neuroeng. Rehabil.
,
6
(
1
), p.
18
.
11.
Fisher
,
S.
,
Lucas
,
L.
, and
Thrasher
,
T. A.
,
2011
, “
Robot-Assisted Gait Training for Patients With Hemiparesis Due to Stroke
,”
Top. Stroke Rehabil.
,
18
(
3
), pp.
269
276
.
12.
Guo
,
B. J.
,
Han
,
J. H.
,
Li
,
X. P.
, and
Yan
,
L.
,
2019
, “
Human-Robot Interactive Control Based on Reinforcement Learning for Gait Rehabilitation Training Robot
,”
Int. J. Adv. Rob. Syst.
,
16
(
2
), p.
1729881419839584
.
13.
Yang
,
T.
, and
Gao
,
X. S.
,
2019
, “
Adaptive Neural Sliding-Mode Controller for Alternative Control Strategies in Lower Limb Rehabilitation
,”
IEEE Trans. Neural Syst. Rehabil. Eng.
,
28
(
1
), pp.
238
247
.
14.
Aguirre-Ollinger
,
G.
,
Narayan
,
A.
, and
Yu
,
H. Y.
,
2019
, “
Phase-Synchronized Assistive Torque Control for the Correction of Kinematic Anomalies in the Gait Cycle
,”
IEEE Trans. Neural Syst. Rehabil. Eng.
,
27
(
11
), pp.
2305
2314
.
15.
Aguirre-Ollinger
,
G.
,
Narayan
,
A.
,
Cheng
,
H. J.
, and
Yu
,
H. Y.
,
2019
, “Exoskeleton Control for Post-Stoke Gait Training of a Paretic Limb Based on Extraction of the Contralateral Gait Phase,”
Wearable Robotics: Challenges and Trends (Biosystems and Biorobotics)
,
M. C.
Carrozza
,
S.
Micera
, and
J. L.
Pons
, eds.,
Springer
,
Cham, Switzerland
, pp.
294
298
.
16.
Alamdari
,
A.
, and
Krovi
,
V.
,
2016
, “
Design and Analysis of a Cable-Driven Articulated Rehabilitation System for Gait Training
,”
ASME J. Mech. Rob.
,
8
(
5
), p.
051018
.
17.
Li
,
J. F.
,
Huang
,
X. Q.
,
Tao
,
C. J.
,
Wang
,
S.
, and
Ji
,
R.
,
2017
, “
Configuration Synthesis and Structure Design of Knee Rehabilitation Exoskeleton
,”
J. Harbin Eng. Univ.
,
38
(
4
), pp.
625
632
.
18.
Tseng
,
T. Y.
,
Lin
,
Y. J.
,
Hsu
,
W. C.
,
Lin
,
L. F.
, and
Kuo
,
C. H.
,
2017
, “
A Novel Reconfigurable Gravity Balancer for Lower-Limb Rehabilitation With Switchable Hip/Knee-Only Exercise
,”
ASME J. Mech. Rob.
,
9
(
4
), p.
041002
.
19.
Gonçalves
,
R. S.
,
Soares
,
G.
, and
Carvalho
,
J. C.
,
2019
, “
Conceptual Design of a Rehabilitation Device Based on Cam-Follower and Crank-Rocker Mechanisms Hand Actioned
,”
J. Braz. Soc. Mech. Sci. Eng.
,
41
(
7
), p.
277
.
20.
Shao
,
Y. X.
,
Xiang
,
Z. X.
,
Liu
,
H. T.
, and
Li
,
L. L.
,
2016
, “
Conceptual Design and Dimensional Synthesis of Cam-Linkage Mechanisms for Gait Rehabilitation
,”
Mech. Mach. Theory
,
104
(
10
), pp.
31
42
.
21.
Godoy
,
J. C.
,
Campos
,
I. J.
,
Pérez
,
L. M.
, and
Muñoz
,
L. R.
,
2018
, “
Nonanthropomorphic Exoskeleton With Legs Based on Eight-Bar Linkages
,”
Int. J. Adv. Rob. Syst.
,
15
(
1
), p.
1729881418755770
.
22.
Kora
,
K.
,
Stinear
,
J.
, and
McDaid
,
A.
,
2016
, “
Design, Analysis, and Optimization of an Acute Stroke Gait Rehabilitation Device
,”
ASME J. Med. Devices
,
11
(
1
), p.
014503
.
23.
Jiang
,
L. J.
,
Wang
,
Y.
, and
Gao
,
A. L.
,
2015
, “
A Mechanism Design and Adjusting Method of Rehabilitation Training Robot
,”
J. Huazhong Univ. Sci. Technol. (Natural Science Edition)
,
43
(
S1
), pp.
280
283
.
24.
Sun
,
Y. X.
,
Ge
,
W. J.
,
Zheng
,
J.
, and
Dong
,
D. B.
,
2015
, “
Design and Evaluation of a Prosthetic Knee Joint Using the Geared Five-Bar Mechanism
,”
IEEE Trans. Neural Syst. Rehabil. Eng.
,
23
(
6
), pp.
1031
1038
.
25.
Xiang
,
Z. X.
,
Shao
,
Y. X.
, and
Li
,
L. L.
,
2017
, “
Optimal Design of an Adjustable One-DOF Robot Mechanism for Lower Limb Rehabilitation
,”
J. Tianjin Univ. (Sci. Technol.)
,
50
(
8
), pp.
877
884
.
26.
Li
,
J. F.
,
Zuo
,
S. P.
,
Zhang
,
L. Y.
,
Dong
,
M. J.
,
Zhang
,
Z. K.
,
Tao
,
C. J.
, and
Ji
,
R.
,
2020
, “
Mechanical Design and Performance Analysis of a Novel Parallel Robot for Ankle Rehabilitation
,”
ASME J. Mech. Rob.
,
12
(
5
), p.
051007
.
27.
Zhu
,
J. Y.
,
Wang
,
Q. N.
, and
Wang
,
L.
,
2014
, “
On the Design of a Powered Transtibial Prosthesis With Stiffness Adaptable Ankle and Toe Joints
,”
IEEE Trans. Ind. Electron.
,
61
(
9
), pp.
4797
4807
.
28.
Standardization Administration of China
,
2020
,
General Specifications for Motion Rehabilitation Training Robot
,
SAC
,
Beijing, MD
, GB/T 37704-2019.
29.
Mohan
,
S.
,
Mohanta
,
J. K.
,
Kurtenbach
,
S.
,
Paris
,
J.
,
Corves
,
B.
, and
Huesing
,
M.
,
2017
, “
Design, Development and Control of a 2PRP-2PPR Planar Parallel Manipulator for Lower Limb Rehabilitation Therapies
,”
Mech. Mach. Theory
,
112
(
6
), pp.
272
294
.
30.
Ye
,
J.
,
Zhao
,
X.
,
Wang
,
Y.
,
Sun
,
X. C.
,
Chen
,
J. N.
, and
Xia
,
X. D.
,
2019
, “
A Novel Planar Motion Generation Method Based on the Synthesis of Planetary Gear Train With Noncircular Gears
,”
J. Mech. Sci. Technol.
,
33
(
2
), pp.
4939
4949
.
31.
Deshpande
,
S.
, and
Purwar
,
A.
,
2017
, “
A Task-Driven Approach to Optimal Synthesis of Planar Four-Bar Linkages for Extended Burmester Problem
,”
ASME J. Mech. Rob.
,
9
(
6
), p.
061005
.
32.
Li
,
X. Y.
,
Ge
,
X.
,
Purwar
,
A.
, and
Ge
,
Q. J.
,
2015
, “
A Unified Algorithm for Analysis and Simulation of Planar Four-Bar Motions Defined With R- and P-Joints
,”
ASME J. Mech. Rob.
,
7
(
1
), p.
011014
.
33.
Zhu
,
L. H.
,
2016
, “
Kinematic Mapping Based Planar Motion Synthesis Theory and Its Application in Rehabilitation Mechanisms
,”
Ph.D. thesis
,
Hefei University of Technology
,
Hefei, Anhui
.
You do not currently have access to this content.