Abstract

Cable-driven parallel robots (CDPRs) have the characteristic of easy deployment, which endows CDPRs with flexible workspace, freely configurable degrees-of-freedom (DOFs), and various configurations, greatly expanding their range of applications. Modular design provides excellent convenience and feasibility for deployment, which is a crucial issue of CDPR design. A highly integrated cable-driving module is designed in this paper, which includes the winding bobbin, servo motor, force sensor, external encoder, electromagnetic brake, as well as other devices. Experiments show that the maximum cable length control error is less than 0.16%, and the maximum cable tension control error is less than 8% in the back-and-forward rotation test. Furthermore, a CDPR with eight cables and six DOFs is constructed rapidly using the proposed module, whose dimension is 850 × 850 × 650 mm3. Results show that the robot’s trajectory errors are all less than 4.5 mm, and the root-mean-square-error (RMSE) is 2.1 mm. Besides, the compliance control experiments show that the robot’s tracking error in an impedance control mode is less than 2 mm, and the RMSE is 0.95 mm. Moreover, the dragging force in a teaching mode is less than 2.5 N. The proposed integrated cable-driving module could be helpful for the modular design and deployment of CDPRs.

References

1.
Nan
,
R.
,
Li
,
D.
,
Jin
,
C.
,
Wang
,
Q.
,
Zhu
,
L.
,
Zhu
,
W.
,
Zhang
,
H.
,
Yue
,
Y.
, and
Qian
,
L.
,
2011
, “
The Five-Hundred-Meter Aperture Spherical Radio Telescope (FAST) Project
,”
Int. J. Mod. Phys. D
,
20
(
6
), pp.
989
1024
.
2.
Mao
,
Y.
, and
Agrawal
,
S. K.
,
2012
, “
Design of a Cable-Driven Arm Exoskeleton (CAREX) for Neural Rehabilitation
,”
IEEE Trans. Robot.
,
28
(
4
), pp.
922
931
.
3.
Tanaka
,
M.
,
Seguchi
,
Y.
, and
Shimada
,
S.
,
1988
, “
Kineto-Statics of Skycam-Type Wire Transport System
,”
Proceedings of USA-Japan Symposium on Flexible Automation, Crossing Bridges: Advances in Flexible Automation and Robotics
,
Minneapolis, MN
,
July 18–20
, pp.
689
694
.
4.
Tadokoro
,
S.
,
Verhoeven
,
R.
,
Hiller
,
M.
, and
Takamori
,
T.
,
1999
, “
A Portable Parallel Manipulator for Search and Rescue at Large-Scale Urban Earthquakes and an Identification Algorithm for the Installation in Unstructured Environments
,”
Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS’99
,
Kyongju, South Korea
,
Oct. 17–21
, Vol.
2
, pp.
1222
1227
.
5.
Kljuno
,
E.
, and
Williams
,
R. L.
,
2008
, “
Vehicle Simulation System: Controls and Virtual-Reality Based Dynamics Simulation
,”
J. Intell. Robot. Syst.
,
52
(
1
), pp.
79
99
.
6.
Bostelman
,
R.
,
Albus
,
J.
,
Dagalakis
,
N.
, and
Jacoff
,
A.
,
1994
, “
Applications of the NIST Robo Crane
,”
Proceedings of the 5th International Symposium on Robotics and Manufacturing
,
Maui, HI
,
Aug. 14–18
.
7.
Lamaury
,
J.
, and
Gouttefarde
,
M.
,
2013
, “
Control of a Large Redundantly Actuated Cable-Suspended Parallel Robot
,”
Presented at the ICRA’2013: International Conference on Robotics and Automation
,
Karlsruhe, Germany
,
May 6–10
, pp.
4644
4649
.
8.
Yuan
,
H.
,
Courteille
,
E.
,
Gouttefarde
,
M.
, and
Hervé
,
P.-E.
,
2017
, “
Vibration Analysis of Cable-Driven Parallel Robots Based on the Dynamic Stiffness Matrix Method
,”
J. Sound Vib.
,
394
, pp.
527
544
.
9.
Izard
,
J. B.
,
Dubor
,
A.
,
Hervé
,
P. E.
,
Cabay
,
E.
,
Culla
,
D.
,
Rodriguez
,
M.
, and
Barrado
,
M.
,
2017
, “
Large-Scale 3D Printing With Cable-Driven Parallel Robots
,”
Constr. Robot.
,
1
(
1–4
), pp.
69
76
.
10.
Bosscher
,
P.
,
Williams
,
R. L.
, and
Tummino
,
M.
,
2005
, “
A Concept for Rapidly-Deployable Cable Robot Search and Rescue Systems
,”
Proceedings of the ASME International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Long Beach, CA
,
Sept. 24–28
, American Society of Mechanical Engineers, pp.
589
598
.
11.
Tang
,
X.
,
2014
, “
An Overview of the Development for Cable-Driven Parallel Manipulator
,”
Adv. Mech. Eng.
,
6
, pp.
1
9
.
12.
Merlet
,
J. P.
,
2010
, “MARIONET, a Family of Modular Wire-Driven Parallel Robots,”
Advances in Robot Kinematics, Motion in Man and Machine
,
L.
Jadran
, and
M. M.
Stanisic
, eds.,
Springer
,
Dordrecht
, pp.
53
61
.
13.
Merlet
,
J.-P.
,
2016
,
Parallel Robots
, Vol.
128
,
Springer
,
New York
.
14.
Lamaury
,
J.
, and
Gouttefarde
,
M.
,
2013
, “
Control of a Large Redundantly Actuated Cable-Suspended Parallel Robot
,”
2013 IEEE International Conference on Robotics and Automation (ICRA)
,
Karlsruhe, Germany
,
May 6–10
, pp.
4659
4664
.
15.
Zi
,
B.
,
Duan
,
B.
,
Du
,
J.
, and
Bao
,
H.
,
2008
, “
Dynamic Modeling and Active Control of a Cable-Suspended Parallel Robot
,”
Mechatronics
,
18
(
1
), pp.
1
12
.
16.
Yuan
,
H.
,
Courteille
,
E.
, and
Deblaise
,
D.
,
2015
, “
Static and Dynamic Stiffness Analyses of Cable-Driven Parallel Robots With Non-Negligible Cable Mass and Elasticity
,”
Mech. Mach. Theory
,
85
, pp.
64
81
.
17.
Qian
,
S.
,
Zi
,
B.
,
Shang
,
W.
, and
Xu
,
Q.
,
2018
, “
A Review on Cable-Driven Parallel Robots
,”
Chin. J. Mech. Eng.
,
31
(
1
), pp.
66
76
.
18.
Lau
,
D.
,
Oetomo
,
D.
, and
Halgamuge
,
S. K.
,
2013
, “
Generalized Modeling of Multilink Cable-Driven Manipulators With Arbitrary Routing Using the Cable-Routing Matrix
,”
IEEE Trans. Robot.
,
29
(
5
), pp.
1102
1113
.
19.
Yuan
,
H.
,
You
,
X.
,
Zhang
,
Y.
,
Zhang
,
Y.
,
Zhang
,
W.
, and
Xu
,
W.
,
2016
, “
A Novel Calibration Algorithm for Cable-Driven Parallel Robots With Application to Rehabilitation
,”
Appl. Sci.
,
9
(
11
), pp.
1
9
.
20.
Seriani
,
S.
,
Gallina
,
P.
, and
Wedler
,
A.
,
2016
, “
A Modular Cable Robot for Inspection and Light Manipulation on Celestial Bodies
,”
Acta Astronaut.
,
123
, pp.
145
153
.
21.
Gagliardini
,
L.
,
Caro
,
S.
,
Gouttefarde
,
M.
,
Wenger
,
P.
, and
Girin
,
A.
,
2015
, “A Reconfigurable Cable-Driven Parallel Robot for Sandblasting and Painting of Large Structures,”
Cable-Driven Parallel Robots [S.I.]
,
P.
Andreas
, ed.,
Springer
,
Switzerland
, pp.
275
291
.
22.
Merlet
,
J. P.
, and
Daney
,
D.
,
2010
, “
A Portable, Modular Parallel Wire Crane for Rescue Operations
,”
IEEE International Conference on Robotics and Automation, ICRA 2010
,
IEEE
,
Anchorage, AK
,
May 3–7
.
23.
Cong
,
B. P.
,
Guilin
,
Y.
, and
Song
,
H. Y.
,
2005
, “
Dynamic Analysis of Cable-Driven Parallel Mechanisms
,”
2005 IEEE/ASME International Conference on Advanced Intelligent Mechatronics
,
Monterey, CA
,
July 24-28
, pp.
612
617
.
24.
Surdilovic
,
D.
,
Zhang
,
J.
, and
Bernhardt
,
R.
,
2007
, “
STRING-MAN: Wire-Robot Technology for Safe, Flexible and Human-Friendly Gait Rehabilitation
,”
2007 IEEE 10th International Conference on Rehabilitation Robotics
,
Noordwijk, Netherlands
,
June 13–15
, pp.
446
453
.
25.
Merlet
,
J. P.
,
2008
, “
Kinematics of the Wire-Driven Parallel Robot MARIONET Using Linear Actuators
,”
IEEE International Conference on Robotics and Automation
,
Pasadena, CA
,
May 19–23
, pp.
3857
3862
.
26.
Pott
,
A.
,
Mütherich
,
H.
,
Kraus
,
W.
,
Schmidt
,
V.
,
Miermeister
,
P.
, and
Verl
,
A.
,
2013
, “
IPAnema: A Family of Cable-Driven Parallel Robots for Industrial Applications
,”
Mech. Mach. Sci.
,
12
, pp.
119
134
.
27.
Pott
,
A.
,
2018
,
Cable-Driven Parallel Robots: Theory and Application
,
Springer
,
New York
.
28.
Gagliardini
,
L.
,
Caro
,
S.
,
Gouttefarde
,
M.
, and
Girin
,
A.
,
2016
, “
Discrete Reconfiguration Planning for Cable-Driven Parallel Robots
,”
Mech. Mach. Theory
,
100
, pp.
313
337
.
29.
Carricato
,
M.
,
2013
, “
Direct Geometrico-Static Problem of Underconstrained Cable-Driven Parallel Robots With Three Cables
,”
ASME J. Mech. Rob.
,
5
(
3
), pp.
1
9
.
30.
Yuan
,
H.
,
Zhang
,
Y.
, and
Xu
,
W.
,
2018
, “
Design and Experiments of a Redundantly Actuated Cable-Driven Parallel Robot
,”
2018 IEEE International Conference on Robotics and Biomimetics (ROBIO)
,
Kuala Lumpur, Malaysia
,
Dec. 12–15
, pp.
928
933
.
31.
Reichert
,
C.
,
Katharina
,
M.
, and
Bruckmann
,
T.
,
2014
, “Internal Force-Based Impedance Control for Cable-Driven Parallel Robots,”
Advances on Theory and Practice of Robots and Manipulators
, Vol.
22
,
Ceccarelli
Marco
, and
Glazunov
Victor A.
, eds.,
Springer
,
Switzerland
.
32.
Hogan
,
N.
,
1984
, “
Impedance Control: An Approach to Manipulation
,”
1984 American Control Conference
,
San Diego, CA
,
June 6–8
, pp.
304
313
.
33.
Miermeister
,
P.
,
Lächele
,
M.
,
Boss
,
R.
,
Masone
,
C.
,
Schenk
,
C.
,
Tesch
,
J.
,
Kerger
,
M.
,
Teufek
,
H.
,
Pott
,
A.
, and
Bülthoff
,
H. H.
,
2016
, “
The Cablerobot Simulator Large Scale Motion Platform Based on Cable Robot Technology
,”
2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
,
Daejeon, South Korea
,
Oct. 9–14
.
34.
Schiavi
,
R.
,
Antonio
,
B.
, and
Fabrizio
,
F.
,
2009
, “
Integration of Active and Passive Compliance Control for Safe Human–Robot Coexistence
,”
2009 IEEE International Conference on Robotics and Automation
,
Kobe, Japan
,
May 12–17
.
35.
Ortega
,
R.
,
Loria
,
A.
,
Nicklasson
,
P. J.
, and
Sira-Ramirez
,
H.
,
1998
,
Passivity–Based control of Euler-Lagrange systems
,
Springer-Verlag
,
Berlin
.
36.
Caccavale
,
F.
,
Siciliano
,
B.
, and
Villani
,
L.
,
2003
, “
The Tricept Robot: Dynamics and Impedance Control
,”
IEEE/ASME Trans. Mech.
,
8
(
2
), pp.
263
268
.
37.
Bruzzone
,
L.
, and
Callegari
,
M.
,
2010
, “
Application of the Rotation Matrix Natural Invariants to Impedance Control of Rotational Parallel Robots
,”
Adv. Mech. Eng.
,
2
(
2 Pt 1
), pp.
79
97
.
38.
Schmidt
,
V.
, and
Pott
,
A.
,
2013
, “Implementing Extended Kinematics of a Cable-Driven Parallel Robot in Real-Time,”
Cable-Driven Parallel Robots, Mechanisms and Machine Science
, Vol.
12
,
T.
Bruckmann
, and
A.
Pott
, eds.,
Springer
,
Berlin
, pp.
287
298
.
39.
Gustafsson
,
F.
,
1996
, “
Determining the Initial States in Forward-Backward Filtering
,”
IEEE Trans. Signal Process.
,
44
(
4
), pp.
988
992
.
40.
Yuan
,
H.
,
Courteille
,
E.
, and
Deblaise
,
D.
,
2016
, “
Force Distribution With Pose-Dependent Force Boundaries for Redundantly Actuated Cable-Driven Parallel Robots
,”
ASME J. Mech. Rob.
,
8
(
4
), p.
041004
.
41.
Gao
,
B.
,
Song
,
H.
,
Zhao
,
J.
,
Guo
,
S.
,
Sun
,
L.
, and
Tang
,
Y.
,
2014
, “
Inverse Kinematics and Workspace Analysis of a Cable-Driven Parallel Robot With a Spring Spine
,”
Mech. Mach. Theory
,
76
, pp.
56
69
.
42.
Kushida
,
D.
,
Nakamura
,
M.
,
Goto
,
S.
, and
Kyura
,
N.
,
2001
, “
Human Direct Teaching of Industrial Articulated Robot Arms Based on Force-Free Control
,”
Artif. Life Robot.
,
5
(
1
), pp.
26
32
.
You do not currently have access to this content.