Abstract

In recent years, robotic applications have been improved for better object manipulation and collaboration with human. With this motivation, the detection of objects has been studied with a series elastic parallel gripper by simple touching in case of no visual data available. A series elastic gripper, capable of detecting geometric properties of objects, is designed using only elastic elements and absolute encoders instead of tactile or force/torque sensors. The external force calculation is achieved by employing an estimation algorithm. Different objects are selected for trials for recognition. A deep neural network (DNN) model is trained by synthetic data extracted from standard tessellation language (STL) file of selected objects. For experimental setup, the series elastic parallel gripper is mounted on a Staubli RX160 robot arm and objects are placed in pre-determined locations in the workspace. All objects are successfully recognized using the gripper, force estimation, and the DNN model. The best DNN model is capable of recognizing different objects with the average prediction value ranging from 71% to 98%. Hence, the proposed design of the gripper and the algorithm achieved the recognition of selected objects without the need for additional force/torque or tactile sensors.

References

1.
Liu
,
C.-H.
, and
Chiu
,
C.-H.
,
2018
, “
Design and Prototype of Monolithic Compliant Grippers for Adaptive Grasping
,”
2018 3rd International Conference on Control and Robotics Engineering (ICCRE)
,
Nagoya, Japan
, IEEE, pp.
51
55
.
2.
Pratt
,
G. A.
, and
Williamson
,
M. M.
,
1995
, “
Series Elastic Actuators
,”
Proceedings 1995 IEEE/RSJ International Conference on Intelligent Robots and Systems. Human Robot Interaction and Cooperative Robots
,
Pittsburgh, PA
, Vol. 1, IEEE, pp.
399
406
.
3.
Mutlu
,
R.
,
Tawk
,
C.
,
Alici
,
G.
, and
Sariyildiz
,
E.
,
2017
, “
A 3d Printed Monolithic Soft Gripper With Adjustable Stiffness
,”
IECON 2017-43rd Annual Conference of the IEEE Industrial Electronics Society
,
Beijing, China
, IEEE, pp.
6235
6240
.
4.
Al Abeach
,
L. A.
,
Nefti-Meziani
,
S.
, and
Davis
,
S.
,
2017
, “
Design of a Variable Stiffness Soft Dexterous Gripper
,”
Soft Rob.
,
4
(
3
), pp.
274
284
.
5.
Cheng
,
M.
,
Fan
,
S.
,
Yang
,
D.
, and
Jiang
,
L.
,
2020
, “
Design of an Underactuated Finger Based on a Novel Nine-Bar Mechanism
,”
ASME J. Mech. Rob.
,
12
(
6
), p.
065001
.
6.
Russo
,
M.
,
Ceccarelli
,
M.
,
Corves
,
B.
,
Hüsing
,
M.
,
Lorenz
,
M.
,
Cafolla
,
D.
, and
Carbone
,
G.
,
2017
, “
Design and Test of a Gripper Prototype for Horticulture Products
,”
Rob. Comput. Int. Manuf.
,
44
, pp.
266
275
.
7.
Yu
,
S.
,
Lee
,
J.
,
Park
,
B.
, and
Kim
,
K.
,
2017
, “
Design of a Gripper System for Tendon-Driven Telemanipulators Considering Semi-Automatic Spring Mechanism and Eye-in-Hand Camera System
,”
J. Mech. Sci. Technol.
,
31
(
3
), pp.
1437
1446
.
8.
Dong
,
H.
,
Asadi
,
E.
,
Qiu
,
C.
,
Dai
,
J.
, and
Chen
,
I.-M.
,
2018
, “
Geometric Design Optimization of an Under-Actuated Tendon-Driven Robotic Gripper
,”
Rob. Comput. Int. Manuf.
,
50
, pp.
80
89
.
9.
Petković
,
D.
,
Pavlović
,
N. D.
,
Shamshirband
,
S.
, and
Anuar
,
N. B.
,
2013
, “
Development of a New Type of Passively Adaptive Compliant Gripper
,”
Ind. Rob.: Int. J.
,
40
(
6
), pp.
610
623
.
10.
Gao
,
Y.
,
Huang
,
X.
,
Mann
,
I. S.
, and
Su
,
H.-J.
,
2020
, “
A Novel Variable Stiffness Compliant Robotic Gripper Based on Layer Jamming
,”
ASME J. Mech. Rob.
,
12
(
5
), p.
051013
.
11.
Mouazé
,
N.
, and
Birglen
,
L.
,
2021
, “
Deformation Modeling of Compliant Robotic Fingers Grasping Soft Object
,”
ASME J. Mech. Rob.
,
13
(
1
), p.
011009
.
12.
Kim
,
M. J.
,
Choi
,
M.
,
Kim
,
Y. B.
,
Liu
,
F.
,
Moon
,
H.
,
Koo
,
J. C.
, and
Choi
,
H. R.
,
2014
, “
Exploration of Unknown Object by Active Touch of Robot Hand
,”
Int. J. Control Autom. Syst.
,
12
(
2
), pp.
406
414
.
13.
Rus
,
D.
, and
Tolley
,
M. T.
,
2015
, “
Design, Fabrication and Control of Soft Robots
,”
Nature
,
521
(
7553
), pp.
467
475
.
14.
Shian
,
S.
,
Bertoldi
,
K.
, and
Clarke
,
D. R.
,
2015
, “
Dielectric Elastomer Based “Grippers” for Soft Robotics
,”
Adv. Mater.
,
27
(
43
), pp.
6814
6819
.
15.
Sun
,
Z.
,
Hao
,
L.
,
Chen
,
W.
,
Li
,
Z.
, and
Liu
,
L.
,
2013
, “
A Novel Discrete Adaptive Sliding-Mode-Like Control Method for Ionic Polymer–Metal Composite Manipulators
,”
Smart Mater. Struct.
,
22
(
9
), p.
095027
.
16.
Kim
,
H.-I.
,
Han
,
M.-W.
,
Song
,
S.-H.
, and
Ahn
,
S.-H.
,
2016
, “
Soft Morphing Hand Driven by Sma Tendon Wire
,”
Compos. Part B: Eng.
,
105
, pp.
138
148
.
17.
Chen
,
T.
, and
Ciocarlie
,
M.
,
2018
, “
Proprioception-Based Grasping for Unknown Objects Using a Series-Elastic-Actuated Gripper
,”
2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
,
Madrid, Spain
, IEEE, pp.
6675
6681
.
18.
Shintake
,
J.
,
Cacucciolo
,
V.
,
Floreano
,
D.
, and
Shea
,
H.
,
2018
, “
Soft Robotic Grippers
,”
Adv. Mater.
,
30
(
29
), p.
1707035
.
19.
Gao
,
F.
,
Deng
,
H.
, and
Zhang
,
Y.
,
2015
, “
Hybrid Actuator Combining Shape Memory Alloy With dc Motor for Prosthetic Fingers
,”
Sens. Actuators A: Phys.
,
223
, pp.
40
48
.
20.
Chen
,
B.
,
Zi
,
B.
,
Wang
,
Z.
,
Li
,
Y.
, and
Qian
,
J.
,
2021
, “
Development of Robotic Ankle-Foot Orthosis With Series Elastic Actuator and Magneto-Rheological Brake
,”
ASME J. Mech. Rob.
,
13
(
1
), p.
011002
.
21.
Oh
,
S.
, and
Kong
,
K.
,
2016
, “
High-Precision Robust Force Control of a Series Elastic Actuator
,”
IEEE/ASME Trans. Mechatron.
,
22
(
1
), pp.
71
80
.
22.
Kong
,
K.
,
Bae
,
J.
, and
Tomizuka
,
M.
,
2009
, “
Control of Rotary Series Elastic Actuator for Ideal Force-Mode Actuation in Human–Robot Interaction Applications
,”
IEEE/ASME Trans. Mech.
,
14
(
1
), pp.
105
118
.
23.
Sariyildiz
,
E.
,
Chen
,
G.
, and
Yu
,
H.
,
2015
, “
An Acceleration-Based Robust Motion Controller Design for a Novel Series Elastic Actuator
,”
IEEE Trans. Ind. Electron.
,
63
(
3
), pp.
1900
1910
.
24.
Wahrburg
,
A.
,
Zeiss
,
S.
,
Matthias
,
B.
, and
Ding
,
H.
,
2014
, “
Contact Force Estimation for Robotic Assembly Using Motor Torques
,”
2014 IEEE International Conference on Automation Science and Engineering (CASE)
,
New Taipei, Taiwan
, IEEE, pp.
1252
1257
.
25.
Ugurlu
,
B.
,
Nishimura
,
M.
,
Hyodo
,
K.
,
Kawanishi
,
M.
, and
Narikiyo
,
T.
,
2012
, “
A Framework for Sensorless Torque Estimation and Control in Wearable Exoskeletons
,”
2012 12th IEEE International Workshop on Advanced Motion Control (AMC)
,
Sarajevo, Bosnia and Herzegovina
, IEEE, pp.
1
7
.
26.
Vanteddu
,
T.
, and
Ben-Tzvi
,
P.
,
2020
, “
Stable Grasp Control With a Robotic Exoskeleton Glove
,”
ASME J. Mech. Rob.
,
12
(
6
), p.
061015
.
27.
Murakami
,
T.
, and
Ohnishi
,
K.
,
1992
, “
Observer-Based Adaptive Force Control of Multi-Degrees-of-Freedom Manipulator
,”
Proceedings of the 1992 International Conference on Industrial Electronics
,
San Diego, CA
, IEEE, pp.
1500
1505
.
28.
Komada
,
S.
,
Nomura
,
K.
,
Ishida
,
M.
,
Ohnishi
,
K.
, and
Hori
,
T.
,
1992
, “
Adaptive Robust Force Control by Disturbance Observer
,”
Proceedings of the 1992 International Conference on Industrial Electronics, Control, Instrumentation, and Automation
,
San Diego, CA
, IEEE, pp.
1494
1499
.
29.
Bo
,
T. X.
,
Phuong
,
T. T.
,
Ohishi
,
K.
,
Yokokura
,
Y.
, and
Miyazaki
,
T.
,
2016
, “
Robust Position Control Using Double Disturbance Observers Based State Feedback for Two Mass System
,”
IECON 2016-42nd Annual Conference of the IEEE Industrial Electronics Society
,
Florence, Italy
, IEEE, pp.
5814
5819
.
30.
Roozing
,
W.
,
Malzahn
,
J.
,
Caldwell
,
D. G.
, and
Tsagarakis
,
N. G.
,
2016
, “
Comparison of Open-Loop and Closed-Loop Disturbance Observers for Series Elastic Actuators
,”
2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
,
Daejeon, South Korea
, IEEE, pp.
3842
3847
.
31.
Sariyildiz
,
E.
, and
Ohnishi
,
K.
,
2014
, “
An Adaptive Reaction Force Observer Design
,”
IEEE/ASME Trans. Mech.
,
20
(
2
), pp.
750
760
.
32.
Suzumura
,
A.
, and
Fujimoto
,
Y.
,
2016
, “
On Explicit Implementation of Multiple Disturbance Observers Derived From Three-Degree-of-Freedom Control
,”
2016 IEEE 14th International Workshop on Advanced Motion Control (AMC)
,
Auckland, New Zealand
, IEEE, pp.
442
447
.
33.
Wang
,
W.
,
Yu
,
L.
, and
Yang
,
J.
,
2017
, “
Toward Force Detection of a Cable-Driven Micromanipulator for a Surgical Robot Based on Disturbance Observer
,”
Mech. Sci.
,
8
(
2
), p.
323
335
.
34.
Ugurlu
,
B.
,
Nishimura
,
M.
,
Hyodo
,
K.
,
Kawanishi
,
M.
, and
Narikiyo
,
T.
,
2014
, “
Proof of Concept for Robot-Aided Upper Limb Rehabilitation Using Disturbance Observers
,”
IEEE Trans. Human Mach. Syst.
,
45
(
1
), pp.
110
118
.
35.
LeCun
,
Y.
,
Bengio
,
Y.
, and
Hinton
,
G.
,
2015
, “
Deep Learning
,”
Nature
,
521
(
7553
), pp.
436
444
.
36.
Zeiler
,
M. D.
, and
Fergus
,
R.
,
2014
, “
Visualizing and Understanding Convolutional Networks
,”
European Conference on Computer Vision
,
Zurich, Switzerland
, pp.
818
833
.
37.
Simonyan
,
K.
, and
Zisserman
,
A.
,
2015
, “
Very Deep Convolutional Networks for Large-Scale Image Recognition
,”
The 3rd International Conference on Learning Representations (ICLR2015)
,
San Diego, CA
.
38.
Szegedy
,
C.
,
Liu
,
W.
,
Jia
,
Y.
,
Sermanet
,
P.
,
Reed
,
S.
,
Anguelov
,
D.
,
Erhan
,
D.
,
Vanhoucke
,
V.
, and
Rabinovich
,
A.
,
2015
, “
Going Deeper With Convolutions
,”
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
,
Boston, MA
, pp.
1
9
.
39.
Szegedy
,
C.
,
Vanhoucke
,
V.
,
Ioffe
,
S.
,
Shlens
,
J.
, and
Wojna
,
Z.
,
2016
, “
Rethinking the Inception Architecture for Computer Vision
,”
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
,
Las Vegas, NV
, pp.
2818
2826
.
40.
He
,
K.
,
Zhang
,
X.
,
Ren
,
S.
, and
Sun
,
J.
,
2016
, “
Deep Residual Learning for Image Recognition
,”
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
,
Las Vegas, NV
, pp.
770
778
.
41.
Bayraktar
,
E.
,
Yigit
,
C. B.
, and
Boyraz
,
P.
,
2019
, “
A Hybrid Image Dataset Toward Bridging the Gap Between Real and Simulation Environments for Robotics
,”
Mach. Vis. Appl.
,
30
(
1
), pp.
23
40
.
42.
Uijlings
,
J. R.
,
Van De Sande
,
K. E.
,
Gevers
,
T.
, and
Smeulders
,
A. W.
,
2013
, “
Selective Search for Object Recognition
,”
Int. J. Comput. Vis.
,
104
(
2
), pp.
154
171
.
43.
Ren
,
S.
,
He
,
K.
,
Girshick
,
R.
, and
Sun
,
J.
,
2015
, “
Faster R-CNN: Towards Real-Time Object Detection With Region Proposal Networks
,”
Advances in Neural Information Processing Systems
,
Montreal, Canada
, pp.
91
99
.
44.
Redmon
,
J.
,
Divvala
,
S.
,
Girshick
,
R.
, and
Farhadi
,
A.
,
2016
, “
You Only Look Once: Unified, Real-Time Object Detection
,”
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
,
Las Vegas, NV
, pp.
779
788
.
45.
Luo
,
S.
,
Bimbo
,
J.
,
Dahiya
,
R.
, and
Liu
,
H.
,
2017
, “
Robotic Tactile Perception of Object Properties: A Review
,”
Mechatronics
,
48
, pp.
54
67
.
You do not currently have access to this content.