Abstract

This paper presents a self-reconfigurable modular robot with an integrated two degrees-of-freedom (DOF) active docking mechanism. Active docking in modular robotic systems has received a lot of interest recently as it allows small versatile robotic systems to coalesce and achieve the structural benefits of large systems. This feature enables reconfigurable modular robotic systems to bridge the gap between small agile systems and larger robotic systems. The proposed self-reconfigurable mobile robot design exhibits dual mobility using a tracked drive for longitudinal locomotion and a wheeled drive for lateral locomotion. The 2-DOF docking interface allows for efficient docking while tolerating misalignments. To aid autonomous docking, visual marker-based tracking is used to detect and re-position the source robot relative to the target robot. The tracked features are then used in Image-Based Visual Servoing to bring the robots close enough for the docking procedure. The hybrid-tracking algorithm allows eliminating external pixelated noise in the image plane resulting in higher tracking accuracy along with faster frame update on a low-cost onboard computational device. This paper presents the overall mechanical design and the integration details of the modular robotic module with the docking mechanism. An overview of the autonomous tracking and docking algorithm is presented along with a proof-of-concept real-world demonstration of autonomous docking and self-reconfigurability. Experimental results to validate the robustness of the proposed tracking method, as well as the reliability of the autonomous docking procedure, are also presented.

References

1.
Yim
,
M.
,
Shen
,
W. M.
,
Salemi
,
B.
,
Rus
,
D.
,
Moll
,
M.
,
Lipson
,
H.
,
Klavins
,
E.
, and
Chirikjian
,
G. S.
,
2007
, “
Modular Self-reconfigurable Robot Systems: Challenges and Opportunities for the Future
,”
IEEE Rob. Autom. Mag.
,
14
(
1
), pp.
2
11
.
2.
Castano
,
A.
,
Behar
,
A.
, and
Will
,
P. M.
,
2002
, “
The CONRO Modules for Reconfigurable Robots
,”
IEEE/ASME Trans. Mechatron.
,
7
(
4
), pp.
403
409
.
3.
Brown
,
H. B.
,
Vande Weghe
,
J. M.
,
Bererton
,
C. A.
, and
Khosla
,
P. K.
,
2002
, “
Millibot Train for Enhanced Mobility
,”
IEEE/ASME Trans. Mechatron.
,
7
(
4
), pp.
452
461
.
4.
Daudelin
,
J.
,
Jing
,
G.
,
Tosun
,
T.
,
Yim
,
M.
,
Kress-Gazit
,
H.
, and
Campbell
,
M.
,
2018
, “
An Integrated System for Perception-Driven Autonomy With Modular Robots
,”
Sci. Rob.
,
3
(
23
).
5.
Wang
,
W.
,
Yu
,
W.
, and
Zhang
,
H.
,
2010
, “
JL-2: A Mobile Multi-robot System With Docking and Manipulating Capabilities
,”
Int. J. Adv. Rob. Syst.
,
7
(
1
).
6.
Pacheco
,
M.
,
Fogh
,
R.
,
Lund
,
H. H.
, and
Christensen
,
D. J.
,
2015
, “
Fable II: Design of a Modular Robot for Creative Learning
,”
IEEE International Conference on Robotics and Automation (ICRA)
,
Seattle, WA
,
May 26–30
, pp.
6134
6139
.
7.
Shirmohammadi
,
B.
,
Taylor
,
C. J.
,
Yim
,
M.
,
Sastra
,
J.
, and
Park
,
M.
,
2007
, “
Using Smart Cameras to Localize Self-assembling Modular Robots
,”
Proceedings of the 1st ACM/IEEE International Conference on Distributed Smart Cameras
,
Vienna, Austria
,
Sept. 25–28
, pp.
76
80
.
8.
Murata
,
S.
,
Yoshida
,
E.
,
Kamimura
,
A.
,
Kurokawa
,
H.
,
Tomita
,
K.
, and
Kokaji
,
S.
,
2002
, “
M-TRAN: Self-reconfigurable Modular Robotic System
,”
IEEE/ASME Trans. Mechatron.
,
7
(
4
), pp.
431
441
.
9.
Delrobaei
,
M.
, and
McIsaac
,
K. A.
,
2009
, “
Connection Mechanism for Autonomous Self-assembly in Mobile Robots
,”
IEEE Trans. Rob.
,
25
(
6
), pp.
1413
1419
.
10.
Gilpin
,
K.
, and
Rus
,
D.
,
2010
, “
Modular Robot Systems: From Self-assembly to Self-disassembly
,”
IEEE Rob. Autom. Mag.
,
17
(
3
), pp.
38
55
.
11.
Moubarak
,
P.
,
Alvarez
,
E.
, and
Ben-Tzvi
,
P.
,
2013
, “
Reconfiguring a Modular Robot Into a Humanoid Formation: A Multi-body Dynamic Perspective on Motion Scheduling for Modules and Their Assemblies
,”
IEEE International Conference on Automation Science and Engineering. (CASE)
,
Madison, WI
, pp.
687
692
.
12.
Moubarak
,
P.
, and
Ben-Tzvi
,
P.
,
2012
, “
Modular and Reconfigurable Mobile Robotics
,”
Rob. Autom. Syst.
,
60
(
12
), pp.
1648
1663
.
13.
Zhong
,
M.
,
Li
,
M.
, and
Sun
,
L.
,
2017
, “
Tanbot: A Mobile Self-reconfigurable Robot Enhanced With Embedded Positioning Module
,”
Intelligent Robotics and Applications: First International Conference, ICIRA
,
Cleveland, OH
,
Aug. 6–9
.
14.
Kim
,
Y.
, and
Minor
,
M.
,
2010
, “
Distributed Kinematic Motion Control of Multi-robot Coordination Subject to Physical Constraints
,”
Int. J. Rob. Res.
,
29
(
1
), pp.
92
109
.
15.
Kimura
,
H.
, and
Hirose
,
S.
,
2002
, “
Development of Genbu: Active Wheel Passive Joint Articulated Mobile Robot
,”
2002 IEEE/RSJ International Conference on Intelligent Robots and Systems
,
Lausanne
, pp.
823
828
.
16.
Ben-Tzvi
,
P.
,
Goldenberg
,
A. A.
, and
Zu
,
J. W.
,
2008
, “
Design and Analysis of a Hybrid Mobile Robot Mechanism With Compounded Locomotion and Manipulation Capability
,”
ASME J. Mech. Des.
,
130
(
7
), p.
072302
.
17.
Ben-Tzvi
,
P.
,
Goldenberg
,
A. A.
, and
Zu
,
J. W.
,
2010
, “
Articulated Hybrid Mobile Robot Mechanism With Compounded Mobility and Manipulation and Onboard Wireless Sensor/Actuator Control Interfaces
,”
Mechatronics
,
20
(
6
), pp.
627
639
.
18.
Bhatt
,
R.
,
Tang
,
C. P.
,
Abou-Samah
,
M.
, and
Krovi
,
V.
,
2005
, “
A Screw-Theoretic Analysis Framework for Payload Manipulation by Mobile Manipulator Collectives
,”
2005 ASME International Mechanical Engineering Congress and Exposition, IMECE 2005
,
Orlando, FL
, pp.
1597
1606
.
19.
Wilson
,
S.
,
Gameros
,
R.
,
Sheely
,
M.
,
Lin
,
M.
,
Dover
,
K.
,
Gevorkyan
,
R.
,
Haberland
,
M.
,
Bertozzi
,
A.
, and
Berman
,
S.
,
2016
, “
Pheeno, A Versatile Swarm Robotic Research and Education Platform
,”
IEEE Robot. Autom. Lett.
,
1
(
2
), pp.
884
891
.
20.
Kume
,
Y.
,
Hirata
,
Y.
,
Wang
,
Z. D.
, and
Kosuge
,
K.
,
2002
, “
Decentralized Control of Multiple Mobile Manipulators Handling a Single Object in Coordination
,”
2002 IEEE/RSJ International Conference on Intelligent Robots and Systems
,
Lausanne
, pp.
2758
2763
.
21.
Abou-Samah
,
M.
,
Tang
,
C. P.
,
Bhatt
,
R. M.
, and
Krovi
,
V.
,
2006
, “
A Kinematically Compatible Framework for Cooperative Payload Transport by Nonholonomic Mobile Manipulators
,”
Auton. Robots
,
21
(
3
), pp.
227
242
.
22.
Kim
,
Y.
, and
Minor
,
M. A.
,
2010
, “
Coordinated Kinematic Control of Compliantly Coupled Multi-robot Systems in an Array Format
,”
IEEE Trans. Rob.
,
26
(
1
), pp.
173
180
.
23.
Lyder
,
A.
,
Garcia
,
R.
, and
Stoy
,
K.
,
2008
, “
Mechanical Design of Odin, an Extendable Heterogeneous Deformable Modular Robot
,”
IEEE/RSJ International Conference on Intelligent Robots and Systems
,
Nice, France
,
Sept. 22–26
.
24.
Kutzer
,
M. D.
,
Moses
,
M. S.
,
Brown
,
C. Y.
,
Scheidt
,
D. H.
,
Chirikjian
,
G. S.
, and
Armand
,
M.
,
2010
, “
Design of a New Independently-Mobile Reconfigurable Modular Robot
,”
2010 IEEE International Conference on Robotics and Automation, ICRA 2010
,
Anchorage, AK
,
May 3–7
, pp.
2758
2764
.
25.
Davey
,
J.
,
Kwok
,
N.
, and
Yim
,
M.
,
2012
, “
Emulating Self-reconfigurable Robots—Design of the SMORES System
,”
2012 IEEE/RSJ International Conference on Intelligent Robots and Systems
,
Vilamoura-Algarve, Portugal
, pp.
4464
4469
.
26.
Baca
,
J.
,
Hossain
,
S. G. M.
,
Dasgupta
,
P.
,
Nelson
,
C.
, and
Dutta
,
A.
,
2014
, “
ModRED: Hardware Design and Reconfiguration Planning for a High Dexterity Modular Self-reconfigurable Robot for Extra-Terrestrial Exploration
,”
Rob. Auton. Syst.
,
62
(
7
), pp.
1002
1015
.
27.
Baca
,
J.
,
Ferre
,
M.
, and
Aracil
,
R.
,
2012
, “
A Heterogeneous Modular Robotic Design for Fast Response to a Diversity of Tasks
,”
Rob. Auton. Syst.
,
60
(
4
), pp.
522
531
.
28.
Spletzer
,
J.
,
Das
,
A. K.
,
Fierro
,
R.
,
Taylor
,
C. J.
,
Kumar
,
V.
, and
Ostrowski
,
J. P.
,
2001
, “
Cooperative Localization and Control for Multi-robot Manipulation
,”
IEEE International Conference on Intelligent Robots and Systems
, Vol. 2, pp.
631
636
.
29.
Heo
,
D. H.
,
Oh
,
A. R.
, and
Park
,
T. H.
,
2011
, “
A Localization System of Mobile Robots Using Artificial Landmarks
,”
Proceedings of 7th IEEE International Conference on Automation Science and Engineering, CASE 2011
,
Trieste
,
Oct. 29–Nov. 3
, pp.
139
144
.
30.
Das
,
A. K.
,
Fierro
,
R.
,
Kumar
,
V.
,
Ostrowski
,
J. P.
,
Spletzer
,
J.
, and
Taylor
,
C. J.
,
2002
, “
A Vision-Based Formation Control Framework
,”
IEEE Trans. Rob. Autom.
,
18
(
5
), pp.
813
825
.
31.
Kumar
,
P.
,
Saab
,
W.
, and
Ben-Tzvi
,
P.
, “
Design of a Multi-directional Hybrid-Locomotion Modular Robot With Feedforward Stability Control
,”
Proceedings of the 2017 ASME IEDTC/CIE, Vol. 5B: 41st Mechanisms and Robotics Conference
, p.
V05BT08A010
.
32.
Suh
,
J. W.
,
Homans
,
S. B.
, and
Yim
,
M.
,
2002
, “
Telecubes: Mechanical Design of a Module for Self-Reconfigurable Robotics
,”
Proceedings of the IEEE International Conference on Robotics and Automation
,
Washington, DC
,
Nov. 3–7
,pp.
4095
4101
.
33.
Saab
,
W.
, and
Ben-Tzvi
,
P.
,
2016
, “
A Genderless Coupling Mechanism With 6-DOF Misalignment Capability for Modular Self-Reconfigurable Robots
,”
ASME J. Mech. Rob.
,
8
(
6
), p.
061014
.
34.
Romanishin
,
J. W.
,
Gilpin
,
K.
, and
Rus
,
D.
,
2013
, “
M-Blocks: Momentum-Driven, Magnetic Modular Robots
,”
Proceedings of the IEEE International Conference on Intelligent Robots and Systems
,
San Diego, CA
,
Oct. 29–Nov. 2
, pp.
4288
4295
.
35.
Kirby
,
B. T.
,
Aksak
,
B.
,
Campbell
,
J. D.
,
Hoburg
,
J. F.
,
Mowry
,
T. C.
,
Pillai
,
P.
, and
Goldstein
,
S. C.
,
2007
, “
A Modular Robotic System Using Magnetic Force Effectors
,”
Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems
,
San Diego, CA
,
Dec. 11–14
, pp.
2787
2793
.
36.
Qiao
,
G.
,
Song
,
G.
,
Zhang
,
J.
,
Sun
,
H.
,
Wang
,
W.
, and
Song
,
A.
,
2012
, “
Design of Transmote: A Modular Self-Reconfigurable Robot with Versatile Transformation Capabilities
,”
Proceedings of the IEEE International Conference on Robotics and Biomimetics
,
Guangzhou, China
, pp.
1331
1336
.
37.
Wei
,
H.
,
Chen
,
Y.
,
Tan
,
J.
, and
Wang
,
T.
,
2011
, “
Sambot: A Self-assembly Modular Robot System
,”
IEEE/ASME Trans. Mechatron.
,
16
(
4
), pp.
745
757
.
38.
Yim
,
M.
,
Zhang
,
Y.
,
Roufas
,
K.
,
Duff
,
D.
, and
Eldershaw
,
C.
,
2002
, “
Connecting and Disconnecting for Chain Self-configuration With Polybot
,”
IEEE/ASME Trans. Mechatron.
,
7
(
4
), pp.
442
451
.
39.
Moubarak
,
P.
, and
Ben-Tzvi
,
P.
,
2014
, “
A Tristate Rigid Reversible and Non-Back-Drivable Active Docking Mechanism for Modular Robotics
,”
IEEE/ASME Trans. Mechatron.
,
19
(
3
), pp.
840
851
.
40.
Saab
,
W.
,
Racioppo
,
P.
, and
Ben-Tzvi
,
P.
,
2019
, “
A Review of Coupling Mechanism Design for Modular Reconfigurable Robots
,”
Robotica
,
37
(
2
), pp.
378
403
.
41.
Groß
,
R.
,
Bonani
,
M.
,
Mondada
,
F.
, and
Dorigo
,
M.
,
2006
, “
Autonomous Self-assembly in a Swarm-Bot
,”
International Symposium on Autonomous Mini Robots for Research and Edutainment
, pp.
314
322
.
42.
Bererton
,
C.
, and
Khosla
,
P.
,
2000
, “
Toward a Team of Robots with Repair Capabilities: A Visual Docking System
,”
Proceedings of the 7th International Symposium on Experimental Robotics
,
Jan. 25
,
Springer, Berlin/Heidelberg
, pp.
333
342
.
43.
Park
,
M.
,
Chitta
,
S.
,
Teichman
,
A.
, and
Yim
,
M.
,
2008
, “
Automatic Configuration Recognition Methods in Modular Roots
,”
Int. J. Rob. Res.
,
27
(
3–4
), pp.
403
421
.
44.
Corke
,
P. I.
,
2017
,
Robotics, Vision and Control—Fundamental Algorithms in MATLAB
, 2nd ed.,
Vol. 118
,
Springer
,
New York
.
45.
Hutchinson
,
S.
,
Hager
,
G.
, and
Corke
,
P.
,
1996
, “
A Tutorial on Visual Servo Control
,”
IEEE Trans. Rob. Autom.
,
12
(
5
), pp.
651
670
.
46.
Sebastian
,
B.
, and
Ben-Tzvi
,
P.
,
2019
, “
Physics-Based Path Planning for Autonomous Tracked Vehicles in Challenging Terrain
,”
J. Intell. Rob. Syst.
,
95
(
2
), pp.
511
526
.
47.
Sebastian
,
B.
, and
Ben-Tzvi
,
P.
,
2019
, “
Support Vector Machine-Based Real-Time Terrain Estimation for Tracked Robots
,”
Mechatronics
,
62
, p.
102260
.
48.
Kumar
,
A.
, and
Ben-Tzvi
,
P.
,
2016
, “
Spatial Object Tracking System Based on Linear Optical Sensor Arrays
,”
IEEE Sensors J.
,
16
(
22
), pp.
7933
7940
.
49.
Sohal
,
S. S.
,
Saab
,
W.
, and
Ben-Tzvi
,
P.
, “
Improved Alignment Estimation for Autonomous Docking in Mobile Robots
,”
Proceedings of the 2018 ASME IDETC/CIE, Vol. 5A: 42nd Mechanisms & Robotics Conference
,
Quebec City, Quebec, Canada
,
Aug. 26–29
, p.
V05AT07A072
.
50.
Garrido-Jurado
,
S.
,
Muñoz-Salinas
,
R.
,
Madrid-Cuevas
,
F. J.
, and
Marín-Jiménez
,
M. J.
,
2014
, “
Automatic Generation and Detection of Highly Reliable Fiducial Markers Under Occlusion
,”
Pattern Recognit.
,
47
(
6
), pp.
2280
2292
.
51.
Redmon
,
J.
,
Divvala
,
S.
,
Girshick
,
R.
, and
Farhadi
,
A.
,
2016
, “
You Only Look Once: Unified, Real-Time Object Detection
,”
IEEE Conference on Computer Vision and Pattern Recognition
,
Las Vegas, NV
,
June 27–30
, pp.
779
788
.
52.
Lucas
,
B. D.
, and
Kanade
,
T.
,
1981
, “
An Iterative Image Registration Technique With an Application to Stereo Vision
,”
Proceedings of 7th International Joint Conference on Artificial Intelligence
,
Vancouver, BC, Canada
,
Aug. 24
, pp.
674
679
.
You do not currently have access to this content.