Abstract

Nowadays, more and more researchers are pursuing miniaturized and lightweight structure of robots. However, robots with multiple actuators require large control systems if each actuator needs to be controlled independently. In addition, the cables and circuits for control and power supply are the obstacles in reducing size and weight. In this article, a wireless multiplexing control system based on magnetic coupling resonance (MCR) is proposed. The control system can realize wireless energy transmission and control simultaneously. By decomposing a composite signal, it can control multiple actuators with only one input signal. However, in previous researches, their applications are primary and simple due to the switch control without feedback and the lack of systematic design method for robot application. Thus, based on the discrete form of composite signal, the closed-loop of wireless multiplexing control is presented, which makes this promising method a step closer to the practical application. Besides, based on the theoretical model of load power and transmission efficiency, five parameters to be optimized are extracted in accordance with the actual design requirements. The optimization algorithm for load power is proposed using particle swarm optimization (PSO). As for its applications in robots, a Delta robot with flexible linkage and an untethered multidrive pipe robot for sampling operation are designed to demonstrate the proposed control method. The experiment results of the Delta robot show the reliability and accuracy of the system, while the results of the pipe robot prove its potential use in the untethered robot system.

References

1.
McClintock
,
H.
,
Temel
,
F. Z.
,
Doshi
,
N.
,
Koh
,
J.-s.
, and
Wood
,
R. J.
,
2018
, “
The Millidelta: A High-Bandwidth, High-Precision, Millimeter-Scale Delta Robot
,”
Science Robotics
,
3
(
14
), p.
eaar3018
.
2.
Follmer
,
S.
,
Leithinger
,
D.
,
Olwal
,
A.
,
Hogge
,
A.
, and
Ishii
,
H.
,
2013
, “
inFORM: Dynamic Physical Affordances and Constraints Through Shape and Object Actuation
,”
The ACM Symposium on User Interface Software and Technology (UIST)
,
St. Andrews, UK
,
Oct. 8–11
, Vol.
13
, IEEE, p.
2501988
.
3.
Leithinger
,
D.
, and
Ishii
,
H.
,
2010
, “
Relief: A Scalable Actuated Shape Display
,”
Proceedings of the 4th International Conference on Tangible and Embedded Interaction 2010
,
Cambridge, MA
,
Jan. 24–27
, ACM.
4.
Yesin
,
K. B.
,
Vollmers
,
K.
, and
Nelson
,
B. J.
,
2006
, “
Modeling and Control of Untethered Biomicrorobots in a Fluidic Environment Using Electromagnetic Fields
,”
Int. J. Rob. Res.
,
25
(
5–6
), pp.
527
536
.
5.
Zhang
,
L.
,
Abbott
,
J. J.
,
Dong
,
L.
,
Kratochvil
,
B. E.
,
Bell
,
D.
, and
Nelson
,
B. J.
,
2009
, “
Artificial Bacterial Flagella: Fabrication and Magnetic Control
,”
Appl. Phys. Lett.
,
94
(
6
), p.
064107
.
6.
Troisi
,
C. S.
,
Knaflitz
,
M.
,
Olivetti
,
E. S.
,
Martino
,
L.
, and
Durin
,
G.
,
2008
, “
Fabrication of New Magnetic Micro-Machines for Minimally Invasive Surgery
,”
IEEE. Trans. Magn.
,
44
(
11
), pp.
4488
4491
.
7.
Sudo
,
S.
,
Segawa
,
S.
, and
Honda
,
T.
,
2006
, “
Magnetic Swimming Mechanism in a Viscous Liquid
,”
J. Intel. Mater. Syst. Struct.
,
17
(
8–9
), pp.
729
736
.
8.
Guo
,
S.
,
Pan
,
Q.
, and
Khamesee
,
M. B.
,
2008
, “
Development of a Novel Type of Microrobot for Biomedical Application
,”
Microsyst. Tech.
,
14
(
3
), pp.
307
314
.
9.
Johnson
,
B. V.
,
Chowdhury
,
S.
, and
Cappelleri
,
D. J.
,
2020
, “
Local Magnetic Field Design and Characterization for Independent Closed-Loop Control of Multiple Mobile Microrobots
,”
IEEE/ASME Trans. Mech.
,
25
(
2
), pp.
526
534
.
10.
Kurs
,
A.
,
Karalis
,
A.
,
Moffatt
,
R.
,
Joannopoulos
,
J. D.
,
Fisher
,
P.
, and
Soljačić
,
M.
,
2007
, “
Wireless Power Transfer Via Strongly Coupled Magnetic Resonances
,”
Science
,
317
(
5834
), pp.
83
86
.
11.
Kratochvil
,
B. E.
,
Frutiger
,
D.
,
Vollmers
,
K.
, and
Nelson
,
B. J.
,
2009
, “
Visual Servoing and Characterization of Resonant Magnetic Actuators for Decoupled Locomotion of Multiple Untethered Mobile Microrobots
,”
2009 IEEE International Conference on Robotics and Automation
,
Kobe, Japan
,
May 12–17
, IEEE, pp.
1010
1015
.
12.
Frutiger
,
D. R.
,
Vollmers
,
K.
,
Kratochvil
,
B. E.
, and
Nelson
,
B. J.
,
2010
, “
Small, Fast, and Under Control: Wireless Resonant Magnetic Micro-Agents
,”
Int. J. Rob. Res.
,
29
(
5
), pp.
613
636
.
13.
Nagy
,
Z.
,
Frutiger
,
D. R.
,
Leine
,
R. I.
,
Glocker
,
C.
, and
Nelson
,
B. J.
,
2010
, “
Modeling and Analysis of Wireless Resonant Magnetic Microactuators
,”
2010 IEEE International Conference on Robotics and Automation
,
Anchorage, AK
,
May 3–8
, IEEE, pp.
1598
1603
.
14.
Xu
,
K.
, and
Liu
,
G.
,
2013
, “
Design of Selectively Controllable Micro Actuators Powered by Remote Resonant Magnetic Fields
,”
International Conference on Intelligent Robotics and Applications
,
Busan, South Korea
,
Sept. 25–28
, Springer, pp.
143
154
.
15.
Tung
,
H.-W.
,
Maffioli
,
M.
,
Frutiger
,
D. R.
,
Sivaraman
,
K. M.
,
Pané
,
S.
, and
Nelson
,
B. J.
,
2013
, “
Polymer-Based Wireless Resonant Magnetic Microrobots
,”
IEEE Trans. Rob.
,
30
(
1
), pp.
26
32
.
16.
Wang
,
J.
,
Chen
,
G.
, and
Wang
,
H.
,
2019
, “
Wireless Power and Simo Control Based on Magnetic Coupling Resonance Using in Delta Robot
,”
International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Anaheim, CA
,
Aug. 17–23
, Vol.
59247
, American Society of Mechanical Engineers, p.
V05BT07A003
.
17.
Ali
,
M. M.
, and
Takahata
,
K.
,
2011
, “
Wireless Microfluidic Control With Integrated Shape-Memory-Alloy Actuators Operated by Field Frequency Modulation
,”
J. Micromech. Microeng.
,
21
(
7
), p.
075005
.
18.
Nafea
,
M.
,
AbuZaiter
,
A.
,
Kazi
,
S.
, and
Ali
,
M. S. M.
,
2017
, “
Frequency-Controlled Wireless Passive Thermopneumatic Micromixer
,”
J. Microelectromech. Syst.
,
26
(
3
), pp.
691
703
.
19.
Zainal
,
M.
,
Ahmad
,
A.
, and
Ali
,
M. M.
,
2017
, “
Frequency-Controlled Wireless Shape Memory Polymer Microactuator for Drug Delivery Application
,”
Biomed. Microdevices.
,
19
(
1
), p.
8
.
20.
Boyvat
,
M.
,
Vogt
,
D. M.
, and
Wood
,
R. J.
,
2019
, “
Ultrastrong and High-Stroke Wireless Soft Actuators Through Liquid–Gas Phase Change
,”
Adv. Mater. Tech.
,
4
(
2
), p.
1800381
.
21.
Ho
,
S.
,
Wang
,
J.
,
Fu
,
W.
, and
Sun
,
M.
,
2011
, “
A Comparative Study Between Novel Witricity and Traditional Inductive Magnetic Coupling in Wireless Charging
,”
IEEE. Trans. Magn.
,
47
(
5
), pp.
1522
1525
.
22.
Cannon
,
B. L.
,
Hoburg
,
J. F.
,
Stancil
,
D. D.
, and
Goldstein
,
S. C.
,
2009
, “
Magnetic Resonant Coupling as a Potential Means for Wireless Power Transfer to Multiple Small Receivers
,”
IEEE Trans. Power Electron.
,
24
(
7
), pp.
1819
1825
.
23.
Mc Caffrey
,
C.
,
Umedachi
,
T.
,
Jiang
,
W.
,
Sasatani
,
T.
,
Narusue
,
Y.
,
Niiyama
,
R.
, and
Kawahara
,
Y.
,
2020
, “
Continuum Robotic Caterpillar With Wirelessly Powered Shape Memory Alloy Actuators
,”
Soft Rob.
,
7
(
6
), p.
0090
.
24.
Boyvat
,
M.
,
Hafner
,
C.
, and
Leuthold
,
J.
,
2014
, “
Wireless Control and Selection of Forces and Torques-Towards Wireless Engines
,”
Sci. Rep.
,
4
(
1
), p.
5681
.
25.
Boyvat
,
M.
,
Koh
,
J.-S.
, and
Wood
,
R. J.
,
2017
, “
Addressable Wireless Actuation for Multijoint Folding Robots and Devices
,”
Sci. Rob.
,
2
(
8
), p.
eaan1544
.
26.
Yu
,
X.
,
Xie
,
Z.
,
Yu
,
Y.
,
Lee
,
J.
,
Vazquez-Guardado
,
A.
,
Luan
,
H.
,
Ruban
,
J.
,
Ning
,
X.
,
Akhtar
,
A.
,
Li
,
D.
,
Ji
,
B.
,
Liu
,
Y.
,
Sun
,
R.
,
Cao
,
J.
,
Huo
,
Q.
,
Zhong
,
Y.
,
Lee
,
C.
,
Kim
,
S.
,
Gutruf
,
P.
,
Zhang
,
C.
,
Xue
,
Y.
,
Guo
,
Q.
,
Chempakasseril
,
A.
,
Tian
,
P.
,
Lu
,
W.
,
Jeong
,
J.
,
Yu
,
Y.
,
Cornman
,
J.
,
Tan
,
C.
,
Kim
,
B.
,
Lee
,
K.
,
Feng
,
X.
,
Huang
,
Y.
, and
Rogers
,
J.
,
2019
, “
Skin-Integrated Wireless Haptic Interfaces for Virtual and Augmented Reality
,”
Nature
,
575
(
7783
), pp.
473
479
.
27.
Park
,
J.
,
Tak
,
Y.
,
Kim
,
Y.
,
Kim
,
Y.
, and
Nam
,
S.
,
2011
, “
Investigation of Adaptive Matching Methods for Near-Field Wireless Power Transfer
,”
IEEE Trans. Antennas Propagation
,
59
(
5
), pp.
1769
1773
.
28.
Valtchev
,
S.
,
Borges
,
B.
,
Brandisky
,
K.
, and
Klaassens
,
J. B.
,
2009
, “
Resonant Contactless Energy Transfer With Improved Efficiency
,”
IEEE Trans. Power Electron.
,
24
(
3
), pp.
685
699
.
29.
Yuan
,
Q.
,
Chen
,
Q.
,
Li
,
L.
, and
Sawaya
,
K.
,
2010
, “
Numerical Analysis on Transmission Efficiency of Evanescent Resonant Coupling Wireless Power Transfer System
,”
IEEE Trans. Antennas Propagation
,
58
(
5
), pp.
1751
1758
.
30.
Sample
,
A. P.
,
Meyer
,
D. T.
, and
Smith
,
J. R.
,
2010
, “
Analysis, Experimental Results, and Range Adaptation of Magnetically Coupled Resonators for Wireless Power Transfer
,”
IEEE. Trans. Ind. Electron.
,
58
(
2
), pp.
544
554
.
31.
Guoqing
,
H.
,
2015
, “
Discussing the Mutual Inductance and the Coupling Coefficient Between Circular Coils
,”
J. Weinan Normal Univ.
,
30
(
14
), pp.
24
29
.
32.
Eberhart
,
R.
, and
Kennedy
,
J.
,
1995
, “
Particle Swarm Optimization
,”
Proceedings of the IEEE International Conference on Neural Networks
,
Perth, Western Australia
,
Nov. 27–Dec. 1
, Vol. 2, pp.
1942
1948
.
33.
Kalafat
,
M. A.
,
Sevinç
,
H.
,
Samankan
,
S.
,
Altınkaynak
,
A.
, and
Temel
,
Z.
,
2021
, “
A Novel Origami-Inspired Delta Mechanism With Flat Parallelogram Joints
,”
ASME J. Mech. Rob.
,
13
(
2
), p.
021005
.
34.
Correa
,
J. E.
,
Toombs
,
J.
,
Toombs
,
N.
, and
Ferreira
,
P. M.
,
2016
, “
Laminated Micro-Machine: Design and Fabrication of a Flexure-Based Delta Robot
,”
J. Manufact. Process.
,
24
, pp.
370
375
.
35.
Hedrick
,
T. L.
,
2008
, “
Software Techniques for Two- and Three-Dimensional Kinematic Measurements of Biological and Biomimetic Systems
,”
Bioinspir. Biomim.
,
3
(
3
), p.
034001
.
36.
Kalman
,
R. E.
,
1960
, “
A New Approach to Linear Filtering and Prediction Problems
,”
ASME. J. Basic Eng.
,
1
(
82
), pp.
35
45
.
37.
LaViola
,
J. J.
,
2003
, “
Double Exponential Smoothing: An Alternative to Kalman Filter-Based Predictive Tracking
,”
Proceedings of the Workshop on Virtual Environments 2003
,
Zurich, Switzerland
,
May 22–23
, ACM, pp.
199
206
.
38.
Edmondson
,
B. J.
,
Bowen
,
L. A.
,
Grames
,
C. L.
,
Magleby
,
S. P.
,
Howell
,
L. L.
, and
Bateman
,
T. C.
,
2013
, “
Oriceps: Origami-Inspired Forceps
,”
ASME 2013 Conference on Smart Materials, Adaptive Structures and Intelligent Systems
,
Snowbird, UT
,
Sept. 16–18
, ASME.
You do not currently have access to this content.