Abstract

This paper is devoted to the control and identification of a manipulator with three anti-parallelogram joints in series, referred to as X-joints. Each X-joint is a tensegrity one-degree-of-freedom mechanism antagonistically actuated with cables and springs in parallel. As compared to manipulators built with simple revolute joints in series, manipulators with tensegrity X-joint offer a number of advantages, such as an intrinsic stability, variable stiffness, and lower inertia. This design was inspired by the musculosleketon architecture of the bird’s neck, which is known to be very dextrous. A test-bed prototype is presented and used to test computed torque control laws. Friction and cable elasticity are modeled and identified. Their effect on the performance of control laws is analyzed. It is shown that in the context of antagonistic actuation and lightweight design, friction plays a leading role and the significance of modeling cable elasticity is discussed.

References

1.
Yuan
,
H.
,
Zhou
,
L.
, and
Xu
,
W.
,
2019
, “
A Comprehensive Static Model of Cable-Driven Multi-Section Continuum Robots Considering Friction Effect
,”
Mech. Mach. Theory.
,
135
, pp.
130
149
.
2.
Ozawa
,
R.
,
Kobayashi
,
H.
, and
Hashirii
,
K.
,
2014
, “
Classification, and Design of Tendon-Driven Mechanisms
,”
IEEE Trans. Rob.
,
30
(
2
), pp.
396
410
.
3.
Ramadoss
,
V.
,
Zlatanov
,
D.
, and
Zoppi
,
M.
,
2019
, “Kinematic and Workspace Analysis of Minimally Routed Cable Driven Open Chains,”
Advances in Mechanism and Machine Science, IFToMM WC 2019
,
Uhl
,
T.
, ed., Vol.
73
,
Springer
,
Cham
, pp.
2841
2851
.
4.
Bakker
,
D. L.
,
Matsuura
,
D.
,
Takeda
,
Y.
, and
Herder
,
J. L.
,
2015
, “Design of An Environmentally Interactive Continuum Manipulator,”
Proceedings of the 14th IFToMM World Congress
,
Springer
,
Tapei, Taiwan
, pp.
327
336
.
5.
Baril
,
M.
,
Laliberté
,
T.
,
Guay
,
F.
, and
Gosselin
,
C.
,
2010
, “
Static Analysis of Single-Input/Multiple-Output Tendon-Driven Underactuated Mechanisms for Robotic Hands
,”
International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, Vol. 2: 34th Annual Mechanisms and Robotics Conference, Parts A and B, Quebec
,
Canada
, pp.
155
164
.
6.
Mao
,
Y.
, and
Agrawal
,
S. K.
,
2012
, “
Design of a Cable-Driven Arm Exoskeleton (CAREX) for Neural Rehabilitation
,”
IEEE Trans. Rob.
,
28
(
4
), pp.
922
931
.
7.
Abdelaziz
,
S.
,
Barbé
,
L.
,
Renaud
,
P.
,
de Mathelin
,
M.
, and
Bayle
,
B.
,
2017
, “
Control of Cable-Driven Manipulators in the Presence of Friction
,”
Mech. Mach. Theory.
,
107
, pp.
139
147
.
8.
Abourachid
,
A.
, and
Wenger
,
P.
,
2019
, “
Avineck, the Neck of the Bird, an arm for the Robots
,”
Comp. Meth. Biomech. Biomed. Eng.
,
22
(
Sup1
), pp. S2–S3.
9.
Fasquelle
,
B.
,
Furet
,
M.
,
Khanna
,
P.
,
Chablat
,
D.
,
Chevallereau
,
C.
, and
Wenger
,
P.
,
2020
, “
A Bio-Inspired 3-D of Light-Weight Manipulator With Tensegrity X-Joints
,”
IEEE International Conference on Robotics and Automation (ICRA’2020)
.
10.
Böhmer
,
C.
,
Plateau
,
O.
,
Cornette
,
R.
, and
Abourachid
,
A.
,
2019
, “
Correlated Evolution of Neck Length and Leg Length in Birds
,”
R. Soc. Open Sci.
,
6
, p.
181588
.
11.
Buckminster
,
F. R.
, “
Tensile-Integrity Structures
,”
Nov. 13 1962. US Patent 3, 063, 521
.
12.
Motro
,
R.
,
1992
, “
Tensegrity Systems: The State of the Art
,”
Int. J. Space Struct.
,
7
, pp.
75
83
.
13.
Skelton
,
R. E.
, and
de Oliveira
,
M. C.
,
2009
,
Tensegrity Systems
, Vol.
1
.
Boston, MA
,
Springer
.
14.
Myszka
,
D. H.
, and
Joo
,
J. J.
,
2018
, “
A Study on the Structural Suitability of Tensegrity Structures to Serve As Morphing Aircraft Wings
,”
42nd Mechanisms and Robotics Conference of International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Québec
,
ASME
.
15.
Kim Pham
,
N.
, and
Peraza Hernandez
,
E. A.
,
2020
, “
Design Exploration of a Tensegrity-Based Twisting Wing
,”
2nd Mechanisms and Robotics Conference of International Design Engineering Technical Conference
, Online,
ASME
.
16.
Levin
,
S. M.
,
2002
, “
The Tensegrity-Truss As a Model for Spine Mechanics: Biotensegrity
,”
J. Mech. Med. Biology
,
2
(
3–4
), pp.
375
388
.
17.
Arsenault
,
M.
, and
Gosselin
,
C. M.
,
2006
, “
Kinematic, Static and Dynamic Analysis of a Planar 2-D of Tensegrity Mechanism
,”
Mech. Mach. Theory.
,
41
, pp.
1072
1089
.
18.
Crane
,
C. D.
,
Bayat
,
J.
,
Vikas
,
V.
, and
Roberts
,
R.
,
2008
, “Kinematic Analysis of a Planar Tensegrity Mechanism With Pre-Stressed Springs,”
Advances in Robot Kinematics: Analysis and Design
,
Lenarčič
,
J.
, and
Wenger
,
P.
, eds.,
Springer
,
Dordrecht, Germany
, pp.
419
427
.
19.
Wenger
,
P.
, and
Chablat
,
D.
,
2019
, “
Kinetostatic Analysis and Solution Classification of a Class of Planar Tensegrity Mechanisms
,”
Robotica
,
37
(
7
), pp.
1214
1224
.
20.
Snelson
,
K. D.
, “
Continuous Tension, Discontinuous Compression Structures
,”
Feb. 16, 1965. US Patent 3, 169, 611
.
21.
Bohmer
,
C.
,
Prevoteau
,
J.
,
Duriez
,
O.
, and
Abourachid
,
A.
,
2020
, “
Gulper, Ripper and Scrapper: Anatomy of the Neck in Three Species of Vultures
,”
J. Anat.
,
236
(
4
), pp.
701
723
.
22.
Muralidharan
,
V.
, and
Wenger
,
P.
,
2021
, “
Optimal Design and Comparative Study of Two Antagonistically Actuated Tensegrity Joints
,”
Mech. Mach. Theory.
,
159
, p.
104249
.
23.
Furet
,
M.
, and
Wenger
,
P.
,
2019
, “
Kinetostatic Analysis and Actuation Strategy of a Planar Tensegrity 2-X Manipulator
,”
ASME J. Mech. Rob.
,
11
(
6
), p.
060904
.
24.
Caverly
,
R. J.
, and
Forbes
,
J. R.
,
2018
, “
Flexible Cable-Driven Parallel Manipulator Control: Maintaining Positive Cable Tensions
,”
IEEE Trans. Control Syst. Technol.
,
26
(
5
), pp.
1874
1883
.
25.
Baklouti
,
S.
,
Courteille
,
E.
,
Caro
,
S.
, and
Dkhil
,
M.
,
2017
, “
Dynamic and Oscillatory Motions of Cable-Driven Parallel Robots Based on a Non-Linear Cable Tension Model
,”
ASME. J. Mech. Rob.
,
9
(
6
), p.
061014
.
26.
Baklouti
,
S.
,
Courteille
,
E.
,
Lemoine
,
P.
, and
Caro
,
S.
,
2019
, “
Vibration Reduction of Cable-Driven Parallel Robots Through Elasto-Dynamic Model-Based Control
,”
Mech. Mach. Theory.
,
139
, pp.
329
345
.
27.
Jacobsen
,
S. C.
,
Ko
,
H.
,
Iversen
,
E. K.
, and
Davis
,
C. C.
,
1990
, “
Control Strategies for Tendon-Driven Manipulators
,”
IEEE Control Syst. Magaz.
,
10
(
2
), pp.
23
28
.
28.
Kobayashi
,
H.
, and
Ozawa
,
R.
,
2003
, “
Adaptive Neural Network Control of Tendon-Driven Mechanisms With Elastic Tendons
,”
Automatica
,
39
(
9
), pp.
1509
1519
.
29.
Palli
,
G.
,
Borghesan
,
G.
, and
Melchiorri
,
C.
,
2012
, “
Modeling, Identification, and Control of Tendon-Based Actuation Systems
,”
IEEE Trans. Rob.
,
28
(
2
), pp.
277
290
.
30.
Bouchard
,
S.
,
Gosselin
,
C.
, and
Moore
,
B.
,
2009
, “
On the Ability of a Cable-Driven Robot to Generate a Prescribed Set of Wrenchess
,”
ASME J. Mech. Rob.
,
2
(
1
), p.
011010
.
31.
Aldrich
,
J.
, and
Skelton
,
R.
,
2005
, “
Time-Energy Optimal Control of Hyper-Actuated Mechanical Systems With Geometric Path Constraints
,”
Proceedings of the 4th IEEE Conference on Decision and Control
,
Seville, Spain
,
Dec. 15
,
IEEE
, pp.
8246
8253
.
32.
Pott
,
A.
,
2012
, “Influence of Pulley Kinematics on Cable-Driven Parallel Robots,”
Latest Advances in Robot Kinematics
,
Lenarcic
,
J.
, and
Husty
,
M.
, eds.,
Springer Netherlands
,
Dordrecht
, pp.
197
204
.
33.
Fasquelle
,
B.
,
2021
, “
Cable Lengths Calculation, Modelling and Identification of Parameters on a Manipulator Inspired by Bird Necks
,”
Technical Report, LS2N, Université de Nantes; Ecole Centrale de Nantes (ECN), February
.
34.
Van Riesen
,
A.
,
Furet
,
M.
,
Chevallereau
,
C.
, and
Wenger
,
P.
,
2019
, “Dynamic Analysis and Control of An Antagonistically Actuated Tensegrity Mechanism,”
ROMANSY 22–Robot Design, Dynamics and Control
,
V.
Arakelian
, and
P.
Wenger
, eds.,
Springer
,
Rennes
, pp.
481
490
.
35.
Fasquelle
,
B.
,
Furet
,
M.
,
Chevallereau
,
C.
, and
Wenger
,
P.
,
2019
, “Dynamic Modeling and Control of a Tensegrity Manipulator Mimicking a Bird Neck,”
Advances in Mechanism and Machine Science, IFToMM WC 2019
,
Uhl
,
T.
, ed.,
73
,
Springer
,
Cham
, pp.
2087
2097
.
36.
Kraus
,
W.
,
Kessler
,
M.
, and
Pott
,
A.
,
2015
, “Pulley Friction Compensation for Winch-integrated Cable Force Measurement and Verification on a Cable-Driven Parallel Robot,”
2015 IEEE International Conference on Robotics and Automation (ICRA)
,
IEEE
,
Washington
, pp.
1627
1632
.
37.
Pham
,
M. T.
,
Gautier
,
M.
, and
Poignet
,
P.
,
2001
, “Identification of Joint Stiffness With Bandpass Filtering,”
Proc. ICRA'2001
, Vol.
3
,
IEEE
,
Seoul
, pp.
2867
2872
.
38.
Pham
,
M. T.
,
Gautier
,
M.
, and
Poignet
,
P.
,
2002
, “Accelerometer Based Identification of Mechanical Systems,”
Proc. ICRA'2002
, Vol.
4
,
IEEE
,
Washington
, pp.
4293
4298
.
39.
Khalil
,
W.
, and
Dombre
,
E.
,
2004
,
Modeling, Identification and Control of Robots
,
Butterworth-Heinemann
.
40.
Khosravi
,
M. A.
, and
Taghirad
,
H. D.
,
2015
, “Dynamic Analysis and Control of Fully-Constrained Cable Robots With Elastic Cables: Variable Stiffness Formulation,”
Cable-Driven Parallel Robots
,
A.
Pott
, and
T.
Bruckmann
, eds.,
Springer
,
Duisburg
, pp.
161
177
.
41.
Canudas de Wit
,
C.
,
Siciliano
,
B.
, and
Bastin
,
G.
,
1996
,
Theory of Robot Control
,
Springer
.
42.
Jin
,
J.
, and
Gans
,
N.
,
2015
, “
Parameter Identification for Industrial Robots With a Fast and Robust Trajectory Design Approach
,”
Rob. Comput.-Int. Manufact.
,
31
(
15
), pp.
21
29
.
43.
Baklouti
,
S.
,
Courteille
,
E.
,
Caro
,
S.
, and
Dkhil
,
M.
,
2017
, “
Dynamic and Oscillatory Motions of Cable-Driven Parallel Robots Based on a Nonlinear Cable Tension Model
,”
ASME J. Mech. Rob.
,
9
(
6
), p.
061014
.
You do not currently have access to this content.