Abstract

A new symbolic differentiation algorithm is proposed in this paper to automatically generate the inverse dynamics of flexible-joint robots in symbolic form, and results obtained can be used in real-time applications. The proposed method with O(n) computational complexity is developed based on the recursive Newton–Euler algorithm, the chain rule of differentiation, and the computer algebra system. The input of the proposed algorithm consists of symbolic matrices describing the kinematic and dynamic parameters of the robot. The output is the inverse dynamics solution written in portable and optimized code (C-code/Matlab-code). An exemplary, numerical simulation for inverse dynamics of the Kuka LWR4 robot with seven flexible joints is conducted using matlab, in which the computational time per cycle of inverse dynamics is about 0.02 ms. The numerical example provides very good matching results versus existing methods, while requiring much less computation time and complexity.

References

1.
Albu-Schäffer
,
A.
,
Ott
,
C.
, and
Hirzinger
,
G.
,
2007
, “
A Unified Passivity-Based Control Framework for Position, Torque and Impedance Control of Flexible Joint Robots
,”
Int. J. Rob. Res.
,
26
(
1
), pp.
23
39
.
2.
Moberg
,
S.
,
2010
, “
Modeling and Control of Flexible Manipulators
,”
PhD thesis
,
Linköping University
,
Linköping, Sweden
.
3.
Hazel
,
B.
,
Cóté
,
J.
,
Laroche
,
Y.
, and
Mongenot
,
P.
,
2012
, “
A Portable, Multiprocess, Track-Based Robot for In Situ Work on Hydropower Equipment
,”
J. Field Rob.
,
21
(
1
), pp.
69
101
.
4.
Kim
,
J.
, and
Croft
,
E.
,
2018
, “
Preshaping Input Trajectories of Industrial Robots for Vibration Suppression
,”
Rob. Comput. Integr. Manuf.
,
54
, pp.
35
44
.
5.
Iglesias
,
I.
,
Sebastián
,
M.
, and
Ares
,
J.
,
2015
, “
Overview of the State of Robotic Machining: Current Situation and Future Potential
,”
Procedia Eng.
,
132
, pp.
911
917
.
6.
Chung
,
W.
,
Fu
,
L.
, and
Kröger
,
T.
,
2016
, “Motion Control,”
Springer Handbook of Robotics
,
B.
Siciliano
, and
O.
Khatib
, eds.,
Springer
,
Switzerland
, pp.
163
194
.
7.
De Luca
,
A.
, and
Book
,
W.
,
2016
, “Robots With Flexible Elements,”
Springer Handbook of Robotics
,
B.
Siciliano
, and
O.
Khatib
, eds.,
Springer
,
Switzerland
, pp.
287
319
.
8.
Kane
,
T.
, and
Levinson
,
D.
,
1983
, “
The Use of Kane’s Dynamical Equations in Robotics
,”
Int. J. Rob. Res.
,
2
(
3
), pp.
3
21
.
9.
Schiehlen
,
W.
,
1990
,
Multibody System Handbook
,
Springer-Verlag
,
Berlin/Heidelberg
.
10.
Schiehlen
,
W.
,
1997
, “
Multibody System Dynamics: Roots and Perspectives
,”
Multibody Syst. Dyn.
,
1
(
1997
), pp.
149
188
.
11.
Schiehlen
,
W.
, and
Erberhard
,
P.
,
2014
,
Applied Dynamics
,
Springer
.
12.
Siciliano
,
B.
,
Sciavicco
,
L.
,
Villani
,
L.
, and
Oriolo
,
G.
,
2009
,
Robotics Modelling, Planning and Control
,
Springer
,
London
.
13.
Hollerbach
,
J.
,
1980
, “
A Recursive Lagrangian Formulation of Manipulator Dynamics and a Comparative Study of Dynamics Formulation Complexity
,”
IEEE Trans. Syst. Man Cybern.
,
10
(
11
), pp.
730
736
.
14.
Luh
,
J.
,
Walker
,
M.
, and
Paul
,
R.
,
1980
, “
On-Line Computational Scheme for Mechanical Manipulators
,”
ASME J. Dyn. Syst. Meas. Contr.
,
102
(
2
), pp.
69
76
.
15.
Featherstone
,
R.
,
2008
,
Rigid Bodies Dynamics Algorithms
,
Springer
,
Berlin
.
16.
Wang
,
Y.
,
Belzile
,
B.
,
Angeles
,
J.
, and
Li
,
Q.
,
2019
, “
The Modeling of Redundantly Actuated Mechanical Systems
,”
ASME J. Mech. Rob.
,
11
(
6
), p.
061005
.
17.
Khalil
,
W.
,
Boyer
,
F.
, and
Morsli
,
F.
,
2017
, “
General Dynamic Algorithm for Floating Base Tree Structure Robots With Flexible Joints and Links
,”
ASME J. Mech. Rob.
,
9
(
3
), p.
031003
.
18.
Kumar
,
S.
,
Szadkowski
,
K.
,
Mueller
,
A.
, and
Kirchner
,
F.
,
2020
, “
An Analytical and Modular Software Workbench for Solving Kinematics and Dynamics of Series-Parallel Hybrid Robots
,”
ASME J. Mech. Rob.
,
12
(
2
), p.
021114
.
19.
Khalil
,
W.
, and
Creusot
,
D.
,
1997
, “
SYMORO: A System for the Symbolic Modelling of Robots
,”
Robotica
,
15
(
2
), pp.
153
161
.
20.
Schmitke
,
C.
, and
Goossens
,
P.
,
2011
, “
Symbolic Computation Techniques for Multibody Model Development and Code Generation
,”
Multibody Dynamics
,
Brussels, Belgium
,
July 4–7
, pp.
1
7
.
21.
Kurz
,
T.
,
Eberhard
,
P.
,
Henninger
,
C.
, and
Schiehlen
,
W.
,
2010
, “
From Neweul to Neweul-M2: Symbolical Equations of Motion for Multibody System Analysis and Synthesis
,”
Multibody Syst. Dyn.
,
24
(
1
), pp.
25
41
.
22.
De Luca
,
A.
,
2000
, “
Feedforward/Feedback Laws for the Control of Flexible Robots
,”
IEEE International Conference on Robotics and Automation (ICRA)
,
San Francisco, CA
,
Apr. 24–28
, pp.
233
240
.
23.
Buondonno
,
G.
, and
De Luca
,
A.
,
2015
, “
A Recursive Newton–Euler Algorithm for Robots With Elastic Joints and Its Application to Control
,”
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
,
Hamburg, Germany
,
Sept. 28–Oct. 2
, pp.
5526
5532
.
24.
Buondonno
,
G.
, and
De Luca
,
A.
,
2016
, “
Efficient Computation of Inverse Dynamics and Feedback Linearization for VSA-Based Robots
,”
IEEE Robot. Autom. Lett.
,
1
(
2
), pp.
908
915
.
25.
Guarino Lo Bianco
,
C.
,
2009
, “
Evaluation of Generalized Force Derivatives by Means of a Recursive Newton–Euler Approach
,”
IEEE Trans. Robot.
,
25
(
4
), pp.
954
959
.
26.
Pratt
,
G.
, and
Williamson
,
M.
,
1995
, “
Series Elastic Actuators
,”
IEEE/RSJ International Conference on Intelligent Robots and Systems. Human Robot Interaction and Cooperative Robots
,
Pittsburgh, PA
,
Aug. 5–9
, pp.
399
406
.
27.
Giusti
,
A.
,
Malzahn
,
J.
,
Tsagarakis
,
N.
, and
Althoff
,
M.
,
2018
, “
On the Combined Inverse-Dynamics/Passivity-Based Control of Elastic-Joint Robots
,”
IEEE Trans. Robot.
,
34
(
6
), pp.
1461
1471
.
28.
Müller
,
A.
,
2017
, “
Recursive Second-Order Inverse Dynamics for Serial Manipulators
,”
IEEE International Conference on Robotics and Automation (ICRA)
,
Singapore
,
May 29–June 3
, pp.
2483
2489
.
29.
Park
,
F.
,
Kim
,
B.
,
Jang
,
C.
, and
Hong
,
J.
,
2018
, “
Geometric Algorithms for Robot Dynamics: a Tutorial Review
,”
ASME Appl. Mech. Rev.
,
70
(
1
), pp.
1
18
.
30.
Yang
,
K.
,
Yang
,
W.
, and
Wang
,
C.
,
2018
, “
Inverse Dynamic Analysis and Position Error Evaluation of the Heavy-Duty Industrial Robot With Elastic Joints: An Efficient Approach Based on Lie Group
,”
Nonlinear Dyn.
,
93
, pp.
487
504
.
31.
Spong
,
M. W.
,
1987
, “
Modeling and Control of Elastic Joint Robots
,”
ASME J. Dyn. Syst. Meas. Contr.
,
109
(
4
), pp.
310
318
.
32.
Tomei
,
P.
,
1990
, “
An Observer for Flexible Joint Robots
,”
IEEE Trans. Autom. Contr.
,
35
(
6
), pp.
739
743
.
33.
De Luca
,
A.
, and
Tomei
,
P.
,
1996
, “Elastic Joints,”
Theory of Robot Control
,
C.
Canudas de Wit
,
B.
Siciliano
, and
G.
Bastin
, eds.,
Springer-Verlag
,
London
, pp.
179
217
.
34.
Armstrong-Helouvry
,
B.
,
1991
,
Control of Machines With Friction
,
Kluwer Academic Publishers
,
Boston, MA
.
35.
Khalil
,
W.
, and
Dombre
,
E.
,
2004
,
Modeling, Identification and Control of Robots
,
Butterworth-Heinemann
,
Oxford
.
36.
Samin
,
J.
, and
Fisette
,
P.
,
2003
,
Symbolic Modeling of Multibody Systems
,
Kluwer Academic Publishers
,
Boston, MA
.
37.
Uchida
,
T.
,
2011
, “
Real-Time Dynamic Simulation of Constrained Multibody Systems Using Symbolic Computation
,”
PhD thesis
,
University of Waterloo
.
38.
Wittkopf
,
A.
,
2008
, “
Automatic Code Generation and Optimization in Maple
,”
J. Numer. Anal. Ind. Appl. Math.
,
3
(
1–2
), pp.
167
180
.
39.
Bischoff
,
R.
,
Kurth
,
J.
,
Schreiber
,
G.
,
Koeppe
,
R.
,
Albu-Schäffer
,
A.
,
Beyer
,
A.
,
Eiberger
,
O.
,
Haddadin
,
S.
,
Stemmer
,
A.
,
Grunwald
,
G.
, and
Hirzinger
,
G.
,
2010
, “
The Kuka-DLR Lightweight Robot Arm—A New Reference Platform for Robotics Research and Manufacturing
,”
ISR 2010 (41st International Symposium on Robotics) and ROBOTIK 2010
,
Munich, Germany
,
June 7–9
, pp.
1
8
.
40.
Jubien
,
A.
,
Gautier
,
M.
, and
Janot
,
A.
,
2014
, “
Dynamic Identification of the Kuka LWR Robot Using Motor Torques and Joint Torque Sensors Data
,”
19th World Congress The International Federation of Automatic Control
,
Cape Town, South Africa
,
Aug. 24–29
, pp.
8391
8396
.
41.
Biagiotti
,
L.
, and
Melchiorri
,
C.
,
2009
,
Trajectory Planning for Automatic Machines and Robots
,
Springer
,
Berlin/Heidelberg
.
You do not currently have access to this content.