Abstract

The jamming mechanism is a crucial method to tune the stiffness of soft-bodied machines to adapt to their surroundings. However, it is difficult for the present jamming structures to integrate them into systems with complicated shapes such as twist, cylinder, and spiral. This paper introduces a novel jamming mechanism termed a filament jamming technique, which varies stiffness using jamming of a cluster of tiny and compliant filaments. The jamming structure demonstrated various characteristics such as softness, shape compatibility, lightweight, and high stiffness. These feats can meet a variety of application scenarios that the traditional jamming one cannot afford. The experimental test was used to explore the jamming structure's stiffness behavior and dynamic performance. The influence of the filament structure dimensions, material properties, and the vacuum pressure on the stiffness was revealed. With the negative pressure increasing, both the natural frequency and damping ratio increase due to the rigidity variation. It indicates that the filament jamming structure has excellent response rapidity and shock resistance. Our work demonstrated some versatile features of the filament jamming technology, like shape adaptation, shape-preserving, stiffness stability, and compliance. To demonstrate the advantage of the jamming technique, we constructed a soft gripper and a torsional actuator to illustrate how the mechanics of filament jamming can enhance real-world robotics systems’ performance. Therefore, the filament jamming mechanism provides various machines and structures with additional properties to increase forces transmitted to the environment and tune response and damping. This study aims to foster a new generation of mechanically versatile machines and structures with softness and stiffness.

References

1.
Majidi
,
C.
, and
Wood
,
R. J.
,
2010
, “
Tunable Elastic Stiffness With Microconfined Magnetorheological Domains at Low Magnetic Field
,”
Appl. Phys. Lett.
,
97
(
16
), p.
164104
.
2.
Cheng
,
N. G.
,
Gopinath
,
A.
,
Wang
,
L.
,
Iagnemma
,
K.
, and
Hosoi
,
A. E.
,
2014
, “
Thermally Tunable, Self-Healing Composites for Soft Robotic Applications
,”
Macromol. Mater. Eng.
,
299
(
11
), pp.
1279
1284
.
3.
Zhang
,
Y.
,
Zhang
,
N.
,
Hingorani
,
H.
,
Ding
,
N.
,
Wang
,
D.
,
Yuan
,
C.
,
Zhang
,
B.
,
Gu
,
G.
, and
Ge
,
Q.
,
2019
, “
Fast-Response, Stiffness-Tunable Soft Actuator by Hybrid Multilateral 3D Printing
,”
Adv. Funct. Mater.
,
29
(
15
), p.
1806698
.
4.
Rus
,
D.
, and
Tolley
,
M.
,
2015
, “
Design, Fabrication and Control of Soft Robots
,”
Nature
,
521
(
7553
), pp.
466
475
.
5.
Kim
,
Y. J.
,
Cheng
,
S.
,
Kim
,
S.
, and
Iagnemma
,
K.
,
2013
, “
A Novel Layer Jamming Mechanism With Tunable Stiffness Capability for Minimally Invasive Surgery
,”
IEEE Trans. Rob.
,
29
(
4
), pp.
1031
1042
.
6.
Connolly
,
F.
,
Walsh
,
C. J.
, and
Bertoldi
,
K.
,
2017
, “
Automatic Design of Fiber-Reinforced Soft Actuators for Trajectory Matching
,”
Proc. Natl. Acad. Sci.
,
114
(
1
), pp.
51
56
.
7.
Zappetti
,
D.
,
Jeong
,
S. H.
,
Shintake
,
J.
, and
Floreano
,
D.
,
2020
, “
Phase Changing Materials-Based Variable-Stiffness Tensegrity Structures
,”
Soft Rob.
,
7
(
3
), pp.
362
369
.
8.
Vanderborght
,
B.
,
Albu-Schaeffer
,
A.
,
Bicchi
,
A.
,
Burdet
,
E.
,
Caldwell
,
D. G.
,
Carloni
,
R.
,
Catalano
,
M.
,
Eiberger
,
O.
,
Friedl
,
W.
,
Ganesh
,
G.
,
Garabini
,
M.
,
Grebenstein
,
M.
,
Grioli
,
G.
,
Haddadin
,
S.
,
Hoppner
,
H.
,
Jafari
,
A.
,
Laffranchi
,
M.
,
Lefeber
,
D.
,
Petit
,
F.
,
Stramigioli
,
S.
,
Tsagarakis
,
N.
,
Van Damme
,
M.
,
Van Ham
,
R.
,
Visser
,
L. C.
, and
Wolf
,
S.
,
2013
, “
Variable Impedance Actuators: A Review
,”
Rob. Auton. Syst.
,
61
(
12
), pp.
1601
1614
.
9.
Morimoto
,
Y.
,
Onoe
,
H.
, and
Takeuchi
,
S.
,
2018
, “
Biohybrid Robot Powered by an Antagonistic Pair of Skeletal Muscle Tissues
,”
Sci. Rob.
,
3
(
18
), p.
eaat4440
.
10.
Yang
,
C.
,
Geng
,
S.
,
Walker
,
I.
,
Branson
,
D.
,
Liu
,
J.
,
Dai
,
J.
, and
Kang
,
R.
,
2020
, “
Geometric Constraint-Based Modeling and Analysis of a Novel Continuum Robot With Shape Memory Alloy Initiated Variable Stiffness
,”
Int. J. Rob. Res.
,
39
(
14
), pp.
1620
1634
.
11.
Zappetti
,
D.
,
Arandes
,
R.
,
Ajanic
,
E.
, and
Floreano
,
D.
,
2020
, “
Variable-Stiffness Tensegrity Spine
,”
Smart Mater. Struct.
,
29
(
7
), p.
075013
.
12.
Wolf
,
S.
,
Grioli
,
G.
,
Eiberger
,
O.
,
Friedl
,
W.
,
Grebenstein
,
M.
,
Hoppner
,
H.
,
Burdet
,
E.
,
Caldwell
,
D. G.
,
Carloni
,
R.
,
Catalano
,
M. G.
,
Lefeber
,
D.
,
Stramigioli
,
S.
,
Tsagarakis
,
N.
,
Van Damme
,
M.
,
Van Ham
,
R.
,
Vanderborght
,
B.
,
Visser
,
L. C.
,
Bicchi
,
A.
, and
Albu-Schaffer
,
A.
,
2016
, “
Variable Stiffness Actuators: Review on Design and Components
,”
IEEE/ASME Trans. Mech.
,
21
(
5
), pp.
2418
2430
.
13.
Bilancia
,
P.
,
Berselli
,
G.
, and
Palli
,
G.
,
2020
, “
Virtual and Physical Prototyping of a Beam-Based Variable Stiffness Actuator for Safe Human-Machine Interaction
,”
Rob. Comput. Integr. Manuf.
,
65
, p.
101886
.
14.
Naselli
,
G. A.
,
Rimassa
,
L.
,
Zoppi
,
M.
, and
Molfino
,
R.
,
2017
, “
A Variable Stiffness Joint With Superelastic Material
,”
Meccanica
,
52
(
4–5
), pp.
781
793
.
15.
Wu
,
J.
,
Wang
,
Z.
,
Chen
,
W.
, and
Wang
,
Y.
,
2020
, “
Design and Validation of a Novel Leaf Spring-Based Variable Stiffness Joint With Reconfigurability
,”
IEEE/ASME Trans. Mech.
,
25
(
4
), pp.
2045
2053
.
16.
Manti
,
M.
,
Cacucciolo
,
V.
, and
Cianchetti
,
M.
,
2016
, “
Stiffening in Soft Robotics: A Review of the State of the Art
,”
IEEE Rob. Autom. Mag.
,
23
(
3
), pp.
93
106
.
17.
Li
,
Y.
,
Chen
,
Y.
,
Yang
,
Y.
, and
Wei
,
Y.
,
2017
, “
Passive Particle Jamming and Its Stiffening of Soft Robotic Grippers
,”
IEEE Trans. Rob.
,
33
(
2
), pp.
446
455
.
18.
Wang
,
T.
,
Zhang
,
J.
,
Li
,
Y.
,
Hong
,
J.
, and
Wang
,
M. Y.
,
2019
, “
Electrostatic Layer Jamming Variable Stiffness for Soft Robotics
,”
IEEE/ASME Trans. Mech.
,
24
(
2
), pp.
424
433
.
19.
Hauser
,
S.
,
Robertson
,
M.
,
Ijspeert
,
A.
, and
Paik
,
J.
,
2017
, “
JammJoint: A Variable Stiffness Device Based on Granular Jamming for Wearable Joint Support
,”
IEEE Rob. Autom. Lett.
,
2
(
2
), pp.
849
855
.
20.
Narang
,
Y. S.
,
Degirmenci
,
A.
,
Vlassak
,
J. J.
, and
Howe
,
R. D.
,
2018
, “
Transforming the Dynamic Response of Robotic Structures and Systems Through Laminar Jamming
,”
IEEE Rob. Autom. Lett.
,
3
(
2
), pp.
688
695
.
21.
Narang
,
Y. S.
,
Vlassak
,
J. J.
, and
Howe
,
R. D.
,
2018
, “
Mechanically Versatile Soft Machines Through Laminar Jamming
,”
Adv. Funct. Mater.
,
28
(
17
), p.
1707136
.
22.
Coyle
,
S.
,
Majidi
,
C.
,
Leduc
,
P.
, and
Jimmy Hsia
,
K.
,
2018
, “
Bio-Inspired Soft Robotics: Material Selection, Actuation, and Design
,”
Extreme Mech. Lett.
,
22
, pp.
51
59
.
23.
Zhao
,
B.
,
Zeng
,
L.
,
Wu
,
Z.
, and
Xu
,
K.
,
2020
, “
A Continuum Manipulator for Continuously Variable Stiffness and Its Stiffness Control Formulation
,”
Mech. Mach. Theory
,
149
, p.
103746
.
24.
Baines
,
R.
,
Freeman
,
S.
,
Fish
,
F.
, and
Kramer-Bottiglio
,
R.
,
2020
, “
Variable Stiffness Morphing Limb for Amphibious Legged Robots Inspired by Chelonian Environmental Adaptations
,”
Bioinspiration Biomimetics
,
15
(
2
), p.
025002
.
25.
Guo
,
X.
,
Li
,
W.
,
Gao
,
Q.
,
Yan
,
H.
,
Fei
,
Y.
, and
Zhang
,
W.
,
2020
, “
Self-Locking Mechanism for Variable Stiffness Rigid-Soft Gripper
,”
Smart Mater. Struct.
,
29
(
3
), p.
035033
.
26.
Li
,
C.
,
Gu
,
X.
,
Xiao
,
X.
,
Lim
,
C. M.
, and
Ren
,
H.
, “
Flexible Robot With Variable Stiffness in Transoral Surgery
,”
IEEE/ASME Trans. Mech.
,
25
(
1
), pp.
1
10
.
27.
Wang
,
N.
,
Chen
,
B.
,
Ge
,
X.
,
Zhang
,
X.
, and
Chen
,
W.
,
2021
, “
Design, Kinematics, and Application of Axially and Radially Expandable Modular Soft Pneumatic Actuators
,”
J. Mech. Rob.
,
13
(
2
), p.
021019
.
28.
Zhang
,
L.
,
Huang
,
Q.
,
Wang
,
W.
, and
Cai
,
K.
,
2020
, “
Design and Characterization of a Soft Vacuum-Actuated Rotary Actuator
,”
ASME J. Mech. Rob.
,
12
(
1
), p.
011008
.
29.
Yang
,
Y.
,
Zhang
,
Y.
,
Kan
,
Z.
,
Zeng
,
J.
, and
Wang
,
M. Y.
,
2020
, “
Hybrid Jamming for Bioinspired Soft Robotic Fingers
,”
Soft Rob.
,
7
(
3
), pp.
292
308
.
30.
Bajo
,
A.
, and
Simaan
,
N.
,
2016
, “
Hybrid Motion/Force Control of Multi-Backbone Continuum Robots
,”
Int. J. Rob. Res.
,
35
(
4
), pp.
422
434
.
31.
Xiao
,
W.
,
Hu
,
D.
,
Chen
,
W.
,
Yang
,
G.
, and
Han
,
X.
,
2021
, “
A New Type of Soft Pneumatic Torsional Actuator With Helical Chambers for Flexible Machines
,”
ASME J. Mech. Rob.
,
13
(
1
), p.
011003
.
32.
Shintake
,
J.
,
Cacucciolo
,
V.
,
Floreano
,
D.
, and
Shea
,
H.
,
2018
, “
Soft Robotic Grippers
,”
Adv. Mater.
,
30
(
29
), p.
1707035
.
33.
Li
,
L.
,
Ma
,
W.
,
Zhang
,
Q.
,
Yuan
,
G.
,
Li
,
H.
, and
Tian
,
Y.
,
2020
, “
Research on the Mechanism of Variable Stiffness of the Twisted and Coiled Polymer Actuator During Saturated Contraction
,”
Smart Mater. Struct.
,
29
(
6
), p.
065014
.
You do not currently have access to this content.