Abstract

This paper presents a robust method for controlling the terrestrial motion of a bimodal multirotor vehicle that can roll and fly. Factors influencing the mobility and controllability of the vehicle are explored and compared to strictly flying multirotor vehicles; the differences motivate novel control and control allocation strategies that leverage the non-standard configuration of the bimodal design. A fifth-order dynamic model of the vehicle subject to kinematic rolling constraints is the basis for a nonlinear, multi-input, multi-output, sliding mode controller. Constrained optimization techniques are used to develop a novel control allocation strategy that minimizes power consumption while rolling. Simulations of the vehicle under closed-loop control are presented. A functional hardware embodiment of the vehicle is constructed onto which the controllers and control allocation algorithm are deployed. Experimental data of the vehicle under closed-loop control demonstrate good performance and robustness to parameter uncertainty. Data collected also demonstrate that the control allocation algorithm correctly determines a thrust-minimizing solution in real-time.

References

1.
Choi
,
S. H.
, and
Zhu
,
W. K.
,
2012
, “
Performance Optimisation of Mobile Robots for Search-and-Rescue
,”
Appl. Mech. Mater.
,
232
, pp.
403
407
.
2.
Murphy
,
R. R.
,
Tadokoro
,
S.
, and
Kleiner
,
A.
,
2016
, “Disaster Robotics,”
Springer Handbook of Robotics
,
B.
Siciliano
,
O.
Khatib
, eds.,
Springer
,
Cham
.
3.
Bishop
,
B.
,
Crabbe
,
F.
, and
Hudock
,
B.
,
2005
, “
Design of a Low-Cost, Highly Mobile Urban Search and Rescue Robot
,”
Adv. Rob.
,
19
(
8
), pp.
1
27
.
4.
Neumann
,
M.
,
Predki
,
T.
,
Heckes
,
L.
, and
Labenda
,
P.
,
2013
, “
Snake-Like, Tracked, Mobile Robot With Active Flippers for Urban Search-and-Rescue Tasks
,”
Ind. Rob.
,
40
(
3
), pp.
246
250
.
5.
Santos
,
J. M.
,
Krajník
,
T.
, and
Duckett
,
T.
,
2017
, “
Spatio-temporal Exploration Strategies for Long-Term Autonomy of Mobile Robots
,”
Rob. Auton. Syst.
,
88
, pp.
116
126
.
6.
Kalantari
,
A.
, and
Spenko
,
M.
,
2014
, “
Modeling and Performance Assessment of the HyTAQ, a Hybrid Terrestrial/Aerial Quadrotor
,”
IEEE Trans. Rob.
,
30
(
5
), pp.
1278
1285
.
7.
Takahashi
,
N.
,
Yamashita
,
S.
,
Sato
,
Y.
,
Kutsuna
,
Y.
, and
Yamada
,
M.
,
2015
, “
All-Round Two-Wheeled Quadrotor Helicopters With Protect-Frames for Air-Land-Sea Vehicle (Controller Design and Automatic Charging Equipment)
,”
Adv. Rob.
,
29
(
1
), pp.
69
87
.
8.
Morton
,
S.
, and
Papanikolopoulos
,
N.
,
2017
, “
A Small Hybrid Ground-Air Vehicle Concept
,”
IEEE International Conference on Intelligent Robots and Systems (IROS)
,
Vancouver, Canada, Sept. 24–28
, pp.
5149
5154
.
9.
Kossett
,
A.
, and
Papanikolopoulos
,
N.
,
2011
, “
A Robust Miniature Robot Design for Land/Air Hybrid Locomotion
,”
Proceedings of IEEE International Conference on Robotics and Automation
, pp.
4595
4600
. .
10.
Kawasaki
,
K.
,
Zhao
,
M.
,
Okada
,
K.
, and
Inaba
,
M.
,
2013
, “
MUWA: Multi-field Universal Wheel for Air-Land Vehicle With Quad Variable-Pitch Propellers
,”
Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems
, pp.
1880
1885
.
11.
Boria
,
F. J.
,
Bachmann
,
R.J.
,
Ifju
,
P.G.
,
Quinn
,
R.D.
,
Vaidyanathan
,
R.
,
Perry
,
C.
and
Wagener
,
J.
,
2005
, “
A Sensor Platform Capable of Aerial and Terrestrial Locomotion
,”
Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS
,
Edmonton, Canada, Aug. 2–6
, pp.
3959
3964
.
12.
Sreevishnu
,
S.
,
Koshy
,
M.
,
Krishnan
,
A.
, and
Das
,
G. P.
,
2018
, “
Kinematic Design, Analysis and Simulation of a Hybrid Robot with Terrain and Aerial Locomotion Capability
,”
Proceedings of 3rd International Conference on Design, Analysis, Manufacturing and Simulation (ICDAMS 2018)
, Vol. 03008, pp.
1
7
.
13.
Stewart
,
W.
,
Weisler
,
W.
,
MacLeod,
M.
,
Powers
,
T.
,
Defreitas
,
A.
,
Gritter
,
R.
,
Anderson
,
M.
,
Peters
,
K.
,
Gopalarathnam
,
A.
, and
Bryant
,
M.
,
2018
, “
Design and Demonstration of a Seabird-Inspired Fixed-Wing Hybrid UAV-UUV System
,”
Bioinspir. Biomim.
,
13
(
5
), p.
056013
.
14.
Siddall
,
R.
, and
Kovač
,
M.
,
2014
, “
Launching the AquaMAV: Bioinspired Design for Aerial-Aquatic Robotic Platforms
,”
Bioinspir. Biomim.
,
9
(
3
), p.
031001
.
15.
Maia
,
M. M.
,
Mercado
,
D. A.
, and
Diez
,
F. J.
,
2017
, “
Design and Implementation of Multirotor Aerial-Underwater Vehicles With Experimental Results
,”
IEEE International Conference on Intelligent Robots and Systems
,
Vancouver, Canada, Sept. 24–28
, pp.
961
966
.
16.
Atay
,
S.
,
Jenkins
,
T.
,
Buckner
,
G.
, and
Bryant
,
M.
,
2020
, “
Energetic Analysis and Optimization of a Bi-modal Rolling-Flying Vehicle
,”
Int. J. Intell. Robot. Appl.
,
4
(
1
), pp.
3
20
.
17.
Stebler
,
S.
,
Mackunis
,
W.
, and
Reyhanoglu
,
M.
,
2016
, “
Nonlinear Output Feedback Tracking Control of a Quadrotor UAV in the Presence of Uncertainty
,”
Proceedings of 14th International Conference on Control, Automation, Robotics and Vision, ICARCV 2016
,
Phuket, Thailand, Nov. 13–15
, pp.
1
6
.
18.
Mahony
,
R.
,
Kumar
,
V.
, and
Corke
,
P.
,
2012
, “
Multirotor Aerial Vehicles: Modeling, Estimation, and Control of Quadrotor
,”
IEEE Robot. Autom. Mag.
,
19
(
3
), pp.
20
32
.
19.
L’Afflitto
,
A.
, and
Mohammadi
,
K.
,
2017
, “
Equations of Motion of Rotary-Wing Unmanned Aerial System With Time-Varying Inertial Properties
,”
J. Guid. Control Dyn.
,
41
(
2
), pp.
554
559
.
20.
Lee
,
T.
,
Leok
,
M.
, and
Mcclamroch
,
N. H.
,
2013
, “
Nonlinear Robust Tracking Control of a Quadrotor UAV on SE(3)
,”
Asian J. Control
,
15
(
2
), pp.
391
408
.
21.
Schneider
,
T.
,
Ducard
,
G.
,
Rudin
,
K.
, and
Strupler
,
P.
,
2012
, “
Fault-Tolerant Control Allocation for Multirotor Helicopters Using Parametric Programming
,”
International Micro Air Vehicle Conference and Flight Competition (IMAV)
,
Braunschweig, Germany
,
July
.
22.
Ducard
,
G. J. J.
, and
Hua
,
M.-D.
,
2012
, “
Discussion and Practical Aspects on Control Allocation for a Multi-Rotor Helicopter
,”
ISPRS—International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences
, XXXVIII-1/C22, pp.
95
100
.
23.
Monteiro
,
J. C.
,
Lizarralde
,
F.
, and
Hsu
,
L.
,
2016
, “
Optimal Control Allocation of Quadrotor UAVs Subject to Actuator Constraints
,”
Proceedings of the American Control Conference
,
Boston, MA, July 6–8
, pp.
500
505
.
24.
Atay
,
S.
,
Buckner
,
G.
, and
Bryant
,
M.
,
2020
, “
Dynamic Modeling for Bi-modal, Rotary Wing, Rolling-Flying Vehicles
,”
ASME J. Dyn. Syst. Meas. Contr.
,
142
(
11
), p.
111003
.
25.
Kalantari
,
A.
, and
Spenko
,
M.
,
2015
, “Hybrid Aerial and Terrestrial Vehicle,” US Patent No. 9061558B2.
26.
Mizutani
,
S.
,
Okada
,
Y.
,
Salaan
,
C. J.
,
Ishii
,
T.
,
Ohno
,
K.
, and
Tadokoro
,
S.
,
2015
, “
Proposal and Experimental Validation of a Design Strategy for a UAV With a Passive Rotating Spherical Shell
,”
Proceedings of IEEE International Conference on Intelligent Robots and Systems.
27.
Murray
,
R. M.
,
Sluis
,
W.
,
Rathinam
,
M.
, and
Sluis
,
W.
,
1995
, “
Differential Flatness of Mechanical Control Systems: A Catalog of Prototype Systems
,”
Proceedings of ASME International Mechanical Engineering Congress And Exposition.
28.
Powers
,
C.
,
Mellinger
,
D.
, and
Kumar
,
V.
,
2015
, “Quadrotor Kinematics and Dynamics,”
Handbook of Unmanned Aerial Vehicles
,
K.
Valavanis
, and
G.
Vachtsevanos
, eds.,
Springer
,
Dordrecht
.
29.
Lu
,
H.
,
Liu
,
C.
,
Coombes
,
M.
,
Guo
,
L.
, and
Chen
,
W.-H.
,
2016
, “
Online Optimisation-Based Backstepping Control Design With Application to Quadrotor
,”
IET Control Theory Appl.
,
10
(
14
), pp.
1601
1611
.
30.
L’Afflitto
,
A.
,
Anderson
,
R. B.
, and
Mohammadi
,
K.
,
2018
, “
An Introduction to Nonlinear Robust Control for Unmanned Quadrotor Aircraft: How to Design Control Algorithms for Quadrotors Using Sliding Mode Control and Adaptive Control Techniques
,”
IEEE Control Syst. Mag.
,
38
(
3
), pp.
102
121
.
31.
Khalil
,
H.
,
2002
,
Nonlinear Systems
, 3rd ed.,”
Prentice Hall
,
Upper Saddle River, NJ
.
32.
Slotine
,
J.-J. E.
, and
Li
,
W.
,
1991
,
Applied Nonlinear Control
,
Prentice Hall International Inc.
,
Upper Saddle River, NJ
.
33.
Bodson
,
M.
,
2008
, “
Evaluation of Optimization Methods for Control Allocation
,”
J. Guid. Control. Dyn.
,
25
(
4
), pp.
703
711
.
34.
Johansen
,
T. A.
, and
Fossen
,
T. I.
,
2013
, “
Control Allocation—A Survey
,”
Automatica
,
49
(
5
), pp.
1087
1103
.
35.
Reyhanoglu
,
M.
,
Damen
,
R.
, and
Mackunis
,
W.
,
2017
, “
Observer-Based Sliding Mode Control of a 3-DOF Hover System
,”
Proceedings of 14th International Conference on Control, Automation, Robotics and Vision, ICARCV 2016
,
Phuket, Thailand, Nov. 13–15
, pp.
1
6
.
36.
Arora
,
J. S.
,
2004
,
Introduction to Optimum Design
,
Elsevier
,
London
.
You do not currently have access to this content.