Abstract

This article presents an integrated mechanics study for the design and the development of a service tracked robot able to move inside a truck container and roll over flax raw material by compressing it to increase its overall bulk density. A series of flax material properties have been used to properly characterize the robot’s locomotion parameters and to obtain an optimal ground pressure and a correct floating capacity over the material. First, the performance of the proposed robot is evaluated in an emulated container. Then, results acquired during compression tests in a real scenario are provided to demonstrate the effectiveness of the developed robot for industrial applications.

References

1.
Dissanayake
,
K.
, and
Perera
,
S.
,
2016
, “
New Approaches to Sustainable Fibres
,”
Sustainable Fibres Fashion Indus.
,
4
(
Vol. 2
), pp.
1
12
.
2.
Netravali
,
A.
, and
Blackburn
,
R.
,
2005
,
9-Biodegradable Natural Fiber Composites
, 1st ed.,
Vol. 1
,
Woodhead Publishing
, pp.
271
309
.
3.
Heller
,
K.
,
Sheng
,
Q.
,
Guan
,
F.
,
Alexopoulou
,
E.
,
Hua
,
L.
,
Wu
,
G.
,
Jankauskiene
,
Z.
, and
Fu
,
W.
,
2014
, “
A Comparative Study Between Europe and China in Crop Management of Two Types of Flax: Linseed and Fibre Flax
,”
Ind. Crops. Prod.
,
68
, pp.
24
31
.
4.
Venkateswaran
,
S.
,
Chablat
,
D.
, and
Hamon
,
P.
,
2021
, “
An Optimal Design of a Flexible Piping Inspection Robot
,”
J. Mech. Rob.
,
13
(
3
), p.
035002
.
5.
Galati
,
R.
, and
Reina
,
G.
,
2019
, “
Terrain Awareness Using a Tracked Skid-Steering Vehicle With Passive Independent Suspensions
,”
Front. Rob. AI
,
6
, p.
46
.
6.
Zhang
,
L.
,
Yang
,
Y.
,
Gu
,
Y.
,
Sun
,
X.
,
Yao
,
X.
, and
Shuai
,
L.
,
2016
, “
A New Compact Stair-Cleaning Robot
,”
J. Mech. Rob.
,
8
(
4
), p.
045001
.
7.
Mazumdar
,
A.
, and
Asada
,
H. H.
,
2010
, “
An Underactuated, Magnetic-Foot Robot for Steel Bridge Inspection
,”
J. Mech. Rob.
,
2
(
3
), p.
031007
.
8.
Martin
,
N.
,
Davies
,
P.
, and
Baley
,
C.
,
2014
, “
Comparison of the Properties of Scutched Flax and Flax Tow for Composite Material Reinforcement
,”
Ind. Crops. Prod.
,
61
, pp.
284
292
.
9.
Trabelsi
,
S.
,
Kraszewski
,
A. W.
, and
Nelson
,
S. O.
,
2001
, “
Determining Bulk Density of Granular Materials From Microwave Measurements of Their Dielectric Properties
,”
IMTC 2001, Proceedings of the 18th IEEE Instrumentation and Measurement Technology Conference
, Rediscovering Measurement in the Age of Informatics (Cat. No. 01CH 37188), Vol.
3
,
Budapest, Hungary
,
May 21–23
, pp.
1887
1892
.
10.
Van den Akker
,
J. J. H.
,
Soane
,
B.
, and
Hillel
,
D.
,
2005
, “Compaction,”
Encyclopedia of Soils in the Environment
,
D.
Hillel
, ed.,
Elsevier
,
Oxford
, pp.
285
293
.
11.
Akcabay
,
D. T.
,
Perkins
,
N. C.
, and
Ma
,
Z.-D.
,
2004
, “
Predicting the Mobility of Tracked Robotic Vehicles
,”
ASME International Mechanical Engineering Congress and Exposition, Vol. Dynamic Systems and Control, Parts A and B, Anaheim, CA, Nov. 13–19
, pp.
233
242
.
12.
Reina
,
G.
, and
Galati
,
R.
,
2016
, “
Slip-Based Terrain Estimation With a Skid-Steer Vehicle
,”
Vehicle Syst. Dyn.
,
54
(
10
), pp.
1384
1404
.
13.
Matej
,
J.
,
2013
, “
Terrain-Adaptive Auxiliary Track Tensioning System for Tracked Vehicles
,”
ASME J. Comput. Nonlinear Dyn.
,
8
, p.
031013
.
14.
Clarke
,
S.
,
2002
, “
Complying With Atex Directive
,”
InTech
,
49
, pp.
30
30
.
15.
Wang
,
X.
, and
Suh
,
S.
,
2015
, “
Concurrent Speed and Position Tracking of Permanent Magnet Brushed DC Motors
,”
ASME 2004 International Mechanical Engineering Congress and Exposition, Predicting the Mobility of Tracked Robotic Vehicles
,
Anaheim, CA
,
Nov. 13–19
.
16.
Quigley
,
M.
,
Conley
,
K.
,
Gerkey
,
B.
,
Faust
,
J.
,
Foote
,
T.
,
Leibs
,
J.
,
Wheeler
,
R.
, and
Ng
,
A.
,
2009
, “
ROS: An Open-Source Robot Operating System
,” ICRA 2009.
17.
Garber
,
M.
, and
Wolf
,
D.
,
1984
, “
Track-Soil Interaction for Maximum Tractive Effort
,”
J. Agricultural Eng. Res.
,
29
(
3
), pp.
191
198
,
Proceedings of the Diamond Jubilee International Conference AG ENG 84
.
18.
Kacigin
,
V.
, and
Guskov
,
V.
,
1968
, “
The Basis of Tractor Performance Theory: Part 1 General Laws of Soil Strength and Deformation
,”
J. Terramech.
,
5
(
3
), pp.
43
66
.
19.
Opoku
,
A.
,
Panigrahi
,
S.
, and
Tabil
,
L. G.
,
2007
, “
Frictional Properties of Natural and Chemically-Treated Flax Fibers
,”
ASABE Annual International Meeting
, pp.
1
11
.
20.
Reina
,
G.
, and
Leanza
,
A.
,
2018
, “
On the Vibration Analysis of Off-Road Vehicles: Influence of Terrain Deformation and Irregularity
,”
JVC/J. Vib. Control
,
24
(
22
), pp.
5418
5436
.
21.
Laughery
,
S. C.
,
Gerhart
,
G.
, and
Muench
,
P. D.
,
2000
, “
Evaluating Vehicle Mobility Using Bekker’s Equations
,”
ISPIE 4024, AEROSENSE 2000, Unmanned Ground Vehicle Technology II
,
G. R.
Gerhart
,
R. W.
Gunderson
, and
C. M.
Shoemaker
, eds.,
Orlando, FL
,
Apr. 24–28
.
22.
Gerhart
,
G. R.
,
Laughery
,
S. C.
, and
Goetz
,
R. C.
,
2000
, “Off-Road Vehicle Locomotion Using Bekker’s Model,”
Unmanned Ground Vehicle Technology II, G
, (
International Society for Optics and Photonics
), Vol.
4024
,
Gerhart
,
R.
,
Gunderson
,
R.W.
, and
Shoemaker
,
C. M.
, eds.,
SPIE
, pp.
127
136
.
23.
Wong
,
J.
,
2002
, “
Theory of Ground Vehicles
,”
Proc. Inst. Mech. Eng., Part D: J. Auto. Eng.
,
216
(
7
), pp.
629
629
.
24.
Bekakos
,
C.
,
Papazafeiropoulos
,
G.
, and
O’Boy
,
D.
,
2016
, “
Off-Road Tire-Terrain Interaction: An Analytical Solution
,”
SAE Int. J. Commercial Vehicles
,
9
, pp.
244
251
.
25.
Yokoi
,
H.
,
1968
, “
Relationship Between Soil Cohesion and Shear Strength
,”
Soil Sci. Plant Nutr.
,
14
(
3
), pp.
89
93
.
26.
Gerhart
,
G.
,
2004
, “
The Bekker Model Analysis for Small Robotic Vehicles
,”
SAE Commercial Vehicle Engineering Congress & Exhibition
, SAE International, SAE Technical Paper No. 2004-01-2642, Vol.
10
, pp.
1
10
.
This content is only available via PDF.
You do not currently have access to this content.