Abstract

This paper presents the dynamic modeling and control of a bi-modal, multirotor vehicle that is capable of omnidirectional terrestrial rolling and multirotor flight. It focuses on the theoretical development of a terrestrial dynamic model and control systems, with experimental validation. The vehicle under consideration may roll along the ground to conserve power and extend endurance but may also fly to provide high mobility and maneuverability when necessary. The vehicle uses a three-axis gimbal system that decouples the rotor orientation from the vehicle’s terrestrial rolling motion. A dynamic model of the vehicle’s terrestrial motion is derived from first principles. The dynamic model becomes the basis for a nonlinear trajectory tracking control system suited to the architecture of the vehicle. The vehicle is over-actuated while rolling, and the additional degrees of actuation can be used to accomplish auxiliary objectives, such as power optimization and gimbal lock avoidance. Experiments with a hardware vehicle demonstrate the efficacy of the trajectory tracking control system.

References

1.
Choi
,
S. H.
, and
Zhu
,
W. K.
,
2012
, “
Performance Optimisation of Mobile Robots for Search-and-Rescue
,”
Appl. Mech. Mater.
,
232
, pp.
403
407
.
2.
Murphy
,
R. R.
,
Tadokoro
,
S.
, and
Kleiner
,
A.
,
2016
, “
Disaster Robotics
,”
Springer Handbook of Robotics
,
The MIT Press
,
Cambridge, MA
.
3.
Bishop
,
B.
,
Crabbe
,
F.
, and
Hudock
,
B.
,
2005
, “
Design of a Low-Cost, Highly Mobile Urban Search and Rescue Robot
,”
Adv. Robot.
,
19
(
8
), pp.
1
27
.
4.
Neumann
,
M.
,
Predki
,
T.
,
Heckes
,
L.
, and
Labenda
,
P.
,
2013
, “
Snake-Like, Tracked, Mobile Robot With Active Flippers for Urban Search-and-Rescue Tasks
,”
Ind. Rob.
,
40
(
3
), pp.
246
250
.
5.
Santos
,
J. M.
,
Krajník
,
T.
, and
Duckett
,
T.
,
2017
, “
Spatio-Temporal Exploration Strategies for Long-Term Autonomy of Mobile Robots
,”
Robot. Auton. Syst.
,
88
, pp.
116
126
.
6.
Agha-Mohamadi
,
A.
,
Tagliabue
,
A.
,
Schneider
,
S.
, and
Morrell
,
B.
,
2019
, “
The Shapeshifter: A Morphing, Multi-Agent, Multi-Modal Robotic Platform for the Exploration of Titan
, NASA Technical Report, ID 20190033457. https://ntrs.nasa.gov/citations/20190033457.
7.
Ben-Tzvi
,
P.
, and
Saab
,
W.
,
2019
, “
A Hybrid Tracked-Wheeled Multi-Directional Mobile Robot
,”
J. Mech. Robot.
,
11
(
4
), p.
041008
.
8.
Atay
,
S.
,
Jenkins
,
T.
,
Buckner
,
G.
, and
Bryant
,
M.
,
2020
, “
Energetic Analysis and Optimization of a Bi-Modal Rolling-Flying Vehicle
,”
Int. J. Intell. Robot. Appl.
,
4
(
1
), pp.
3
20
.
9.
Atay
,
S.
,
Buckner
,
G.
, and
Bryant
,
M.
,
2020
, “
Dynamic Modeling for Bi-Modal, Rotary Wing, Rolling-Flying Vehicles
,”
ASME J. Dyn. Syst. Meas. Contr.
,
142
(
11
), p.
111003
.
10.
Atay
,
S.
,
Buckner
,
G.
, and
Bryant
,
M.
, “
Control and Control Allocation for Bi-Modal, Rotary Wing, Rolling-Flying Vehicles
,”
ASME J. Mech. Robot.
11.
Takahashi
,
N.
,
Yamashita
,
S.
,
Sato
,
Y.
,
Kutsuna
,
Y.
, and
Yamada
,
M.
,
2015
, “
All-Round Two-Wheeled Quadrotor Helicopters With Protect-Frames for Air-Land-Sea Vehicle (Controller Design and Automatic Charging Equipment)
,”
Adv. Robot.
,
29
(
1
), pp.
69
87
.
12.
Page
,
J. R.
, and
Pounds
,
P. E. I.
,
2014
, “
The Quadroller: Modeling of a UAV/UGV Hybrid Quadrotor
,”
IEEE International Conference on Intelligent Robots and Systems.
13.
Kalantari
,
A.
, and
Spenko
,
M.
,
2014
, “
Modeling and Performance Assessment of the HyTAQ, a Hybrid Terrestrial/Aerial Quadrotor
,”
IEEE Trans. Robot
,
30
(
5
), pp.
1278
1285
.
14.
Borik
,
A.
, et al
,
2019
, “
Caged Quadrotor Drone for Inspection of Central HVAC Ducts
,”
2019 Advances in Science and Engineering Technology International Conferences, ASET 2019
,
Mar. 26–Apr. 10
, pp.
1
7
.
15.
Mizutani
,
S.
,
Okada
,
Y.
,
Salaan
,
C. J.
,
Ishii
,
T.
,
Ohno
,
K.
, and
Tadokoro
,
S.
,
2015
, “
Proposal and Experimental Validation of a Design Strategy for a UAV With a Passive Rotating Spherical Shell
,”
IEEE International Conference on Intelligent Robots and Systems
,
Sept. 28–Oct. 2
, pp.
1271
1278
.
16.
Briod
,
A.
,
Kornatowski
,
P.
,
Zufferey
,
J. C.
, and
Floreano
,
D.
,
2014
, “
A Collision-Resilient Flying Robot
,”
J. Field Rob.
,
31
(
4
), pp.
496
509
.
17.
Bai
,
P.
,
Guerreiro
,
B.
,
Cunha
,
R.
,
Kornatowski
,
P.
,
Floreano
,
D.
, and
Silvestre
,
C.
,
2018
, “
Wall-Contact Sliding Control Strategy for a 2D Caged Quadrotor
,”
International Conference on Control, Automation and Systems
,
Oct. 17–20
, pp.
291
296
.
18.
Powers
,
C.
,
Mellinger
,
D.
, and
Kumar
,
V.
,
2015
, “Quadrotor Kinematics and Dynamics,”
Handbook of Unmanned Aerial Vehicles
,
K.
Valavanis
, and
G. J.
Vachtsevanos
, eds.,
Springer
,
The Netherlands
.
19.
Lee
,
T.
,
Leok
,
M.
, and
Mcclamroch
,
N. H.
,
2013
, “
Nonlinear Robust Tracking Control of a Quadrotor UAV on SE(3)
,”
Asian J. Control
,
15
(
2
), pp.
391
408
.
20.
Atay
,
S.
,
Bryant
,
M.
, and
Buckner
,
G.
,
2020
, “
Real-Time Power Optimization
of
a Bi-Modal Rolling-Flying Vehicle via Extremum Seeking Control
,”
American Control Conference
,
Denver, CO
,
July 1–3
, pp.
5114
5118
.
21.
Zhang
,
J.
, and
Singh
,
S.
,
2014
, “
LOAM: Lidar Odometry and Mapping in Real-Time
,”
Proceedings of Robotics: Science and Systems (RSS 2014)
.
You do not currently have access to this content.