Abstract

This article presents the framework for developing a passive (unpowered) mechanical training simulator for replication of biceps spasticity to complement current clinical assessment training. The passive training simulator was developed to mimic three main behavioral features of spasticity, i.e., abnormal muscle tone, catch-release behavior, and range of motion (ROM) reduction. The simulator can replicate varied levels of spasticity (Modified Ashworth Scale (MAS) levels 0–4) using a combination of three adjustable mechanical design features, i.e., resistance level, catch angle, and ROM selectors. Bench-top evaluation examined the performance of individual mechanical design features, as well as their combined performance. Spastic muscle resistance profiles generated by the simulator qualitatively agreed with the clinical descriptions of spasticity in the MAS. Mean peak simulated resistive torque fell within the clinical measures from actual spasticity patients for MAS 1–4, but was lower for MAS 0 (0.9, 3.5, 4.2, 6.9, 9.8 Nm for MAS 0–4, respectively). Seven clinicians were invited to validate the simulator performance. They were asked to identify the simulated MAS level during a blinded assessment and to score the realism of each simulation feature using a five-point scale, where 3 was “about right,” during a disclosed assessment. The mean percent agreement of clinicians’ judgments was 76 ± 12%. The mean realism score throughout MAS 0–4 were 2.82 ± 0.15. Preliminary results suggested good potential for this simulator in helping future healthcare practitioners learn and practice the basics of spasticity assessment.

References

1.
Mukherjee
,
A.
, and
Chakravarty
,
A.
,
2010
, “
Spasticity Mechanisms—For the Clinician
,”
Front. Neurol.
,
1
, p.
149
. 10.3389/fneur.2010.00149
2.
Pandyan
,
A. D.
,
Gregoric
,
M.
,
Barnes
,
M. P.
,
Wood
,
D.
,
Van Wijck
,
F.
,
Burridge
,
J.
,
Hermens
,
H.
, and
Johnson
,
G. R.
,
2005
, “
Spasticity: Clinical Perceptions, Neurological Realities and Meaningful Measurement
,”
Disabil. Rehabil.
,
27
(
1–2
), pp.
2
6
. 10.1080/09638280400014576
3.
Thibaut
,
A.
,
Chatelle
,
C.
,
Ziegler
,
E.
,
Bruno
,
M. A.
,
Laureys
,
S.
, and
Gosseries
,
O.
,
2013
, “
Spasticity After Stroke: Physiology, Assessment and Treatment
,”
Brain Inj.
,
27
(
10
), pp.
1093
1105
. 10.3109/02699052.2013.804202
4.
Barnes
,
M. P.
, and
Johnson
,
G. R.
,
2008
,
Upper Motor Neurone Syndrome and Spasticity: Clinical Management and Neurophysiology
,
Cambridge University Press
,
New York
.
5.
Sheean
,
G.
,
2002
, “
The Pathophysiology of Spasticity
,”
Eur. J. Neurol.
,
9
(
s1
), pp.
3
9
. 10.1046/j.1468-1331.2002.0090s1003.x
6.
Gracies
,
J. M.
,
2005
, “
Pathophysiology of Spastic Paresis. I: Paresis and Soft Tissue Changes
,”
Muscle Nerve
,
31
(
5
), pp.
535
551
. 10.1002/mus.20284
7.
Bohannon
,
R. W.
, and
Smith
,
M. B.
,
1987
, “
Interrater Reliability of a Modified Ashworth Scale of Muscle Spasticity
,”
Phys. Ther.
,
67
(
2
), pp.
206
207
. 10.1093/ptj/67.2.206
8.
Biering-Sørensen
,
F.
,
Nielsen
,
J. B.
, and
Klinge
,
K.
,
2006
, “
Spasticity-Assessment: A Review
,”
Spinal Cord
,
44
(
12
), pp.
708
722
. 10.1038/sj.sc.3101928
9.
Blackburn
,
M.
,
van Vliet
,
P.
, and
Mockett
,
S.
,
2002
, “
Reliability of Measurements Obtained With the Modified Ashworth Scale in the Lower Extremities of People With Stroke
,”
Phys. Ther.
,
82
(
1
), pp.
25
34
. 10.1093/ptj/82.1.25
10.
Fujisawa
,
T.
,
Takagi
,
M.
,
Takahashi
,
Y.
,
Inoue
,
K.
,
Terada
,
T.
,
Kawakami
,
Y.
, and
Komeda
,
T.
,
2007
, “
Basic Research on the Upper Limb Patient Simulator
,”
2007 IEEE International Conference on Rehabilitation Robotics
,
Noordwijk, The Netherlands
,
June 13
, pp.
48
51
.
11.
Grow
,
D. I.
,
Wu
,
M.
,
Locastro
,
M. J.
,
Arora
,
S. K.
,
Bastian
,
A. J.
, and
Okamura
,
A. M.
,
2008
, “
Haptic Simulation of Elbow Joint Spasticity
,”
Symposium on Haptics Interfaces for Virtual Environment and Teleoperator Systems 2008—Proceedings, Haptics
,
Reno, NV
,
Mar. 13
, pp.
475
476
.
12.
Park
,
H. S.
,
Kim
,
J.
, and
Damiano
,
D. L.
,
2012
, “
Development of a Haptic Elbow Spasticity Simulator (HESS) for Improving Accuracy and Reliability of Clinical Assessment of Spasticity
,”
IEEE Trans. Neural Syst. Rehabil. Eng.
,
20
(
3
), pp.
361
370
. 10.1109/TNSRE.2012.2195330
13.
Park
,
J. H.
,
Lee
,
K. J.
,
Yoon
,
Y. S.
,
Son
,
E. J.
,
Oh
,
J. S.
,
Kang
,
S. H.
,
Kim
,
H.
, and
Park
,
H. S.
,
2017
, “
Development of Elbow Spasticity Model for Objective Training of Spasticity Assessment of Patients Post Stroke
,”
2017 IEEE International Conference on Rehabilitation Robotics
,
London, UK
,
July 17
, pp.
146
151
.
14.
Liang
,
J.
,
Ewoldt
,
R. H.
,
Tippett
,
S. R.
, and
Hsiao-Wecksler
,
E. T.
,
2016
, “
Design and Modeling of a Passive Hydraulic Device for Muscle Spasticity Simulation
,”
ASME J. Med. Devices
,
10
(
2
), p.
020954
. 10.1115/1.4033247
15.
Liang
,
J.
,
2016
,
Design of a Passive Hydraulic Simulator for Abnormal Muscle Behavior Replication
,
University of Illinois at Urbana-Champaign
,
Champaign, IL
.
16.
Wang
,
C.
,
Noh
,
Y.
,
Ebihara
,
K.
,
Terunaga
,
C.
,
Tokumoto
,
M.
,
Okuyama
,
I.
,
Yusuke
,
M.
,
Ishii
,
H.
,
Takanishi
,
A.
,
Hatake
,
K.
, and
Shoji
,
S.
,
2012
, “
Development of an Arm Robot for Neurologic Examination Training
,”
IEEE International Conference on Intelligent Robots and Systems
,
Algarve, Portugal
,
Oct. 7
, pp.
1090
1095
.
17.
Takhashi
,
Y.
,
Komeda
,
T.
,
Koyama
,
H.
,
Yamamoto
,
S.-I.
,
Arimatsu
,
T.
,
Kawakami
,
Y.
,
Inoue
,
K.
, and
Ito
,
Y.
,
2011
, “
Development of an Upper Limb Patient Simulator for Physical Therapy Exercise
,”
2011 IEEE International Conference on Rehabilitation Robotics
,
Zurich, Switzerland
,
June 29
, pp.
1
4
.
18.
Pei
,
Y.
,
Ewoldt
,
R. H.
,
Zallek
,
C. M.
, and
Hsiao-Wecksler
,
E. T.
,
2018
, “
Revised Design of a Passive Hydraulic Training Simulator of Biceps Spasticity
,”
2018 Design of Medical Devices Conference
,
Minneapolis, MN
,
Apr. 9
, p.
V001T11A007
.
19.
Liang
,
J.
,
Pei
,
Y.
,
Ewoldt
,
R. H.
,
Tippett
,
S. R.
, and
Hsiao-Wecksler
,
E. T.
,
2020
, “
Passive Hydraulic Training Simulator for Upper Arm Spasticity
,”
ASME J. Mech. Rob.
,
12
(
4
), p.
045001
. 10.1115/1.4045845
20.
Nam
,
H. S.
,
Koh
,
S.
,
Kim
,
Y. J.
,
Beom
,
J.
,
Lee
,
W. H.
,
Lee
,
S. U.
, and
Kim
,
S.
,
2017
, “
Biomechanical Reactions of Exoskeleton Neurorehabilitation Robots in Spastic Elbows and Wrists
,”
IEEE Trans. Neural Syst. Rehabil. Eng.
,
25
(
11
), pp.
2196
2203
. 10.1109/TNSRE.2017.2714203
21.
Lynn
,
B. O.
,
Erwin
,
A.
,
Guy
,
M.
,
Herman
,
B.
,
Davide
,
M.
,
Ellen
,
J.
,
Anne
,
C.
, and
Kaat
,
D.
,
2013
, “
Comprehensive Quantification of the Spastic Catch in Children With Cerebral Palsy
,”
Res. Dev. Disabil.
,
34
(
1
), pp.
386
396
. 10.1016/j.ridd.2012.08.019
22.
Bhadane
,
M. Y.
,
Gao
,
F.
,
Francisco
,
G. E.
,
Zhou
,
P.
, and
Li
,
S.
,
2015
, “
Correlation of Resting Elbow Angle With Spasticity in Chronic Stroke Survivors
,”
Front. Neurol.
,
6
, p.
183
. 10.3389/fneur.2015.00183
23.
Pandyan
,
A. D.
,
Price
,
C. I. M.
,
Barnes
,
M. P.
, and
Johnson
,
G. R.
,
2003
, “
A Biomechanical Investigation Into the Validity of the Modified Ashworth Scale as a Measure of Elbow Spasticity
,”
Clin. Rehabil.
,
17
(
3
), pp.
290
294
. 10.1191/0269215503cr610oa
24.
Pandyan
,
A. D.
,
Price
,
C. I. M.
,
Rodgers
,
H.
,
Barnes
,
M. P.
, and
Johnson
,
G. R.
,
2001
, “
Biomechanical Examination of a Commonly Used Measure of Spasticity
,”
Clin. Biomech.
,
16
(
10
), pp.
859
865
. 10.1016/S0268-0033(01)00084-5
25.
Kumar
,
R. T. S.
,
Pandyan
,
A. D.
, and
Sharma
,
A. K.
,
2006
, “
Biomechanical Measurement of Post-Stroke Spasticity
,”
Age Ageing
,
35
(
4
), pp.
371
375
. 10.1093/ageing/afj084
26.
Park
,
J. H.
,
Kim
,
Y.
,
Lee
,
K. J.
,
Yoon
,
Y. S.
,
Kang
,
S. H.
,
Kim
,
H.
, and
Park
,
H. S.
,
2019
, “
Artificial Neural Network Learns Clinical Assessment of Spasticity in Modified Ashworth Scale
,”
Arch. Phys. Med. Rehabil.
,
100
(
10
), pp.
1907
1915
. 10.1016/j.apmr.2019.03.016
27.
Meseguer-Henarejos
,
A. B.
,
Sǎnchez-meca
,
J.
,
López-Pina
,
J. A.
, and
Carles-Hernǎndez
,
R.
,
2018
, “
Inter- and Intra-Rater Reliability of the Modified Ashworth Scale: A Systematic Review and Meta-Analysis
,”
Eur. J. Phys. Rehabil. Med.
,
54
(
4
), pp.
576
590
.
28.
Pandyan
,
A.
,
1999
, “
A Review of the Properties and Limitations of the Ashworth and Midified Ashworth Scales as Measures of Spasticity
,”
Clin. Rehabil.
,
13
(
5
), pp.
373
383
. 10.1191/026921599677595404
29.
De Leva
,
P.
,
1996
, “
Adjustments to Zatsiorsky-Seluyanov’s Segment Inertia Parameters
,”
J. Biomech.
,
29
(
9
), pp.
1223
1230
. 10.1016/0021-9290(95)00178-6
30.
Chen
,
J. J. J.
,
Wu
,
Y. N.
,
Huang
,
S. C.
,
Lee
,
H. M.
, and
Wang
,
Y. L.
,
2005
, “
The Use of a Portable Muscle Tone Measurement Device to Measure the Effects of Botulinum Toxin Type A on Elbow Flexor Spasticity
,”
Arch. Phys. Med. Rehabil.
,
86
(
8
), pp.
1655
1660
. 10.1016/j.apmr.2005.03.019
31.
Lee
,
H. M.
,
Chen
,
J. J. J.
,
Ju
,
M. S.
,
Lin
,
C. C. K.
, and
Poon
,
P. P. W.
,
2004
, “
Validation of Portable Muscle Tone Measurement Device for Quantifying Velocity-Dependent Properties in Elbow Spasticity
,”
J. Electromyogr. Kinesiol.
,
14
(
5
), pp.
577
589
. 10.1016/j.jelekin.2004.02.002
32.
McCrea
,
P. H.
,
Eng
,
J. J.
, and
Hodgson
,
A. J.
,
2003
, “
Linear Spring-Damper Model of the Hypertonic Elbow: Reliability and Validity
,”
J. Neurosci. Methods
,
128
(
1–2
), pp.
121
128
. 10.1016/S0165-0270(03)00169-9
33.
Boyd
,
R. N.
, and
Graham
,
H.
,
1999
, “
Objective Measurement of Clinical Findings in the Use of Botulinum Toxin Type A for the Management of Children With Cerebral Palsy
,”
Eur. J. Neurol.
,
6
(
Suppl. 4
), pp.
S23
S35
. 10.1111/j.1468-1331.1999.tb00031.x
34.
Wu
,
Y. N.
,
Ren
,
Y.
,
Goldsmith
,
A.
,
Gaebler
,
D.
,
Liu
,
S. Q.
, and
Zhang
,
L. Q.
,
2010
, “
Characterization of Spasticity in Cerebral Palsy: Dependence of Catch Angle on Velocity
,”
Dev. Med. Child Neurol.
,
52
(
6
), pp.
563
569
. 10.1111/j.1469-8749.2009.03602.x
35.
Ansari
,
N. N.
,
Naghdi
,
S.
,
Hasson
,
S.
,
Azarsa
,
M. H.
, and
Azarnia
,
S.
,
2008
, “
The Modified Tardieu Scale for the Measurement of Elbow Flexor Spasticity in Adult Patients With Hemiplegia
,”
Brain Inj.
,
22
(
13–14
), pp.
1007
1012
. 10.1080/02699050802530557
36.
McGibbon
,
C. A.
,
Sexton
,
A.
,
Jones
,
M.
, and
O’Connell
,
C.
,
2013
, “
Elbow Spasticity During Passive Stretch-Reflex: Clinical Evaluation Using a Wearable Sensor System
,”
J. Neuroeng. Rehabil.
,
10
(
1
), p.
61
. 10.1186/1743-0003-10-61
37.
Mahony
,
R.
,
Member
,
S.
,
Hamel
,
T.
, and
Pflimlin
,
J.-M.
,
2008
, “
Nonlinear Complementary Filters on the Special Orthogonal Group
,”
IEEE Trans. Automat. Control
,
53
(
5
), pp.
1203
1218
. 10.1109/TAC.2008.923738
38.
Pei
,
Y.
,
2018
,
Design and Evaluation of a Passive Hydraulic Simulator for Biceps Spasticity
,
University of Illinois at Urbana-Champaign
,
Champaign, IL
.
39.
Bartko
,
J. J.
,
1966
, “
The Intraclass Correlation Coefficient as a Measure of Reliability
,”
Psychol. Rep.
,
19
(
1
), pp.
3
11
. 10.2466/pr0.1966.19.1.3
40.
Krippendorff
,
K.
,
1980
,
Reliability
,
John Wiley & Sons, Inc
,
Hoboken, NJ
.
41.
McGraw
,
K. O.
, and
Wong
,
S. P.
,
1996
, “
Forming Inferences About Some Intraclass Correlation Coefficients
,”
Psychol. Methods
,
1
(
1
), pp.
30
46
. 10.1037/1082-989X.1.1.30
42.
Cicchetti
,
D. V.
,
1994
, “
Guidelines, Criteria, and Rules of Thumb for Evaluating Normed and Standardized Assessment Instruments in Psychology
,”
Psychol. Assess.
,
6
(
4
), pp.
284
290
. 10.1037/1040-3590.6.4.284
43.
Krippendorff
,
K.
,
2013
,
Content Analysis: An Introduction to Its Methodology
,
SAGE Publications
,
Thousand Oaks, CA
.
44.
Krippendorff
,
K.
,
2004
, “
Reliability in Content Analysis: Some Common Misconceptions and Recommendations
,”
Hum. Commun. Res.
,
30
(
3
), pp.
411
433
. 10.1111/j.1468-2958.2004.tb00738.x
45.
Allison
,
S. C.
,
Abraham
,
L. D.
, and
Petersen
,
C. L.
,
1996
, “
Reliability of the Modified Ashworth Scale in the Assessment of Plantarflexor Muscle Spasticity in Patients With Traumatic Brain Injury
,”
Int. J. Rehabil. Res.
,
19
(
1
), pp.
67
78
. 10.1097/00004356-199603000-00007
46.
Biodex
, “
Dynamometers—Physical Medicine
,” Available https://www.biodex.com/physical-medicine/products/dynamometers, Accessed January 26, 2020.
47.
Song
,
S. Y.
,
Pei
,
Y.
,
Liang
,
J.
, and
Hsiao-Wecksler
,
E. T.
,
2017
, “
Design of a Portable Position, Velocity, and Resistance Meter (PVRM) for Convenient Clinical Evaluation of Spasticity or Rigidity
,”
ASME. Frontiers in Biomedical Devices, 2017 Design of Medical Devices Conference
,
ASME
, p.
V001T11A020
.
48.
Song
,
S. Y.
,
Pei
,
Y.
,
Tippett
,
S. R.
,
Lamichhane
,
D.
,
Zallek
,
C. M.
, and
Hsiao-Wecksler
,
E. T.
,
2018
, “
Validation of a Wearable Position, Velocity, and Resistance Meter for Assessing Spasticity and Rigidity
,”
2018 Design of Medical Devices Conference
,
Minneapolis, MN
,
Apr. 9
, American Society of Mechanical Engineers, p.
V001T10A007
.
49.
Song
,
S. Y.
,
Pei
,
Y.
,
Liang
,
J.
, and
Hsiao-Wecksler
,
E. T.
,
2017
, “
Design of a Portable Position, Velocity, and Resistance Meter (PVRM) for Convenient Clinical Evaluation of Spasticity or Rigidity
,”
Design of Medical Devices Conference
,
Minneapolis, MN
,
Apr. 10
.
50.
Ishikawa
,
S.
,
Okamoto
,
S.
,
Isogai
,
K.
,
Akiyama
,
Y.
,
Yanagihara
,
N.
,
Yamada
,
Y.
, and
Wang
,
L.
,
2015
, “
Assessment of Robotic Patient Simulators for Training in Manual Physical Therapy Examination Techniques
,”
PLoS One
,
10
(
4
), p.
e0126392
. 10.1371/journal.pone.0126392
51.
Winter
,
D. A.
,
2005
,
Biomechanics and Motor Control of Human Movement
,
John Wiley & Sons
,
Hoboken, NJ
.
52.
Thilmann
,
A. F.
,
Fellows
,
S. J.
, and
Garms
,
E.
,
1991
, “
The Mechanism of Spastic Muscle Hypertonus. Variation in Reflex Gain Over the Time Course of Spasticity
,”
Brain
,
114
(
1
), pp.
233
244
. 10.1093/oxfordjournals.brain.a101859
53.
Powers
,
R. K.
,
Campbell
,
D. L.
, and
Rymer
,
W. Z.
,
1989
, “
Stretch Reflex Dynamics in Spastic Elbow Flexor Muscles
,”
Ann. Neurol.
,
25
(
1
), pp.
32
42
. 10.1002/ana.410250106
You do not currently have access to this content.