Abstract

The design of robots at the small scale is a trial-and-error based process, which is costly and time-consuming. There are few dynamic simulation tools available to accurately predict the motion or performance of untethered microrobots as they move over a substrate. At smaller length scales, the influence of adhesion and friction, which scales with surface area, becomes more pronounced. Thus, rigid body dynamic simulators, which implicitly assume that contact between two bodies can be modeled as point contact, are not suitable. In this paper, we present techniques for simulating the motion of microrobots where there can be intermittent and non-point contact between the robot and the substrate. We use these techniques to study the motion of tumbling microrobots of different shapes and select shapes that are optimal for improving locomotion performance. Simulation results are verified using experimental data on linear velocity, maximum climbable incline angle, and microrobot trajectory. Microrobots with improved geometry were fabricated, but limitations in the fabrication process resulted in unexpected manufacturing errors and material/size scale adjustments. The developed simulation model can incorporate these limitations and emulate their effect on the microrobot’s motion, reproducing the experimental behavior of the tumbling microrobots, further showcasing the effectiveness of having such a dynamic model.

References

1.
Erkoc
,
P.
,
Yasa
,
I. C.
,
Ceylan
,
H.
,
Yasa
,
O.
,
Alapan
,
Y.
, and
Sitti
,
M.
,
2018
, “
Mobile Microrobots for Active Therapeutic Delivery
,”
Adv. Therapeutics
,
2
(
1
), p.
1800064
.
2.
Jiang
,
G.-L.
,
Guu
,
Y.-H.
,
Lu
,
C.-N.
,
Li
,
P.-K.
,
Shen
,
H.-M.
,
Lee
,
L.-S.
,
Yeh
,
J. A.
, and
Hou
,
M. T.-K.
,
2010
, “
Development of Rolling Magnetic Microrobots
,”
J. Micromech. Microeng.
,
20
(
8
), p.
085042
. 10.1088/0960-1317/20/8/085042
3.
Hou
,
M. T.
,
Shen
,
H. -M.
,
Jiang
,
G. -L.
,
Lu
,
C. -N.
,
Hsu
,
I. -J.
, and
Yeh
,
J. A.
,
2010
, “
A Rolling Locomotion Method for Untethered Magnetic Microrobots
,”
Appl. Phys. Lett.
,
96
(
2
), p.
024102
. 10.1063/1.3291112
4.
Jing
,
W.
,
Pagano
,
N.
, and
Cappelleri
,
D. J.
,
2013
, “
A Tumbling Magnetic Microrobot with Flexible Operating Modes
,”
Proceedings of IEEE International Conference on Robotics and Automation (ICRA)
,
Karlsruhe, Germany
,
May 6–10
, pp.
5514
5519
.
5.
Jing
,
W.
,
Pagano
,
N.
, and
Cappelleri
,
D. J.
,
2013
, “
A Novel Micro-Scale Magnetic Tumbling Microrobot
,”
J. Micro-Bio Rob.
,
8
(
1
), pp.
1
12
. 10.1007/s12213-012-0053-1
6.
Tung
,
H.-W.
,
Peyer
,
K. E.
,
Sargent
,
D. F.
, and
Nelson
,
B. J.
,
2013
, “
Noncontact Manipulation Using a Transversely Magnetized Rolling Robot
,”
Appl. Phys. Lett.
,
103
(
11
), p.
114101
. 10.1063/1.4820776
7.
Pieters
,
R. S.
,
Tung
,
H. -W.
,
Sargent
,
D. F.
, and
Nelson
,
B. J.
,
2014
, “
Non-Contact Manipulation for Automated Protein Crystal Harvesting Using a Rolling Microrobot
,”
19th IFAC World Congress, IFAC Proceedings Volumes
,
Cape Town, South Africa
,
Aug. 24–29
, Vol.
47
,
Elsevier
, Paper No. 3, pp.
7480
7485
.
8.
Bi
,
C.
,
Guix
,
M.
,
Johnson
,
B. V.
,
Jing
,
W.
, and
Cappelleri
,
D. J.
,
2018
, “
Design of Microscale Magnetic Tumbling Robots for Locomotion in Multiple Environments and Complex Terrains
,”
Micromachines
,
9
(
2
), pp.
1
17
.
9.
Bi
,
C.
,
Niedert
,
E. E.
,
Adam
,
G.
,
Lambert
,
E.
,
Solorio
,
L.
,
Goergen
,
C. J.
, and
Cappelleri
,
D. J.
,
2019
, “
Tumbling Magnetic Microrobots for Biomedical Applications
,”
Proceedings of International Conference on Manipulation Automation and Robotics at Small Scales (MARSS)
,
Helsinki, Finland
,
July 1–5
, pp.
1
6
.
10.
Mair
,
L.
,
Chowdhury
,
S.
,
Paredes-Juarez
,
G.
,
Guix
,
M.
,
Bi
,
C.
,
Johnson
,
B.
,
English
,
B.
,
Jafari
,
S.
,
Baker-McKee
,
J.
,
Watson-Daniels
,
J.
et al.,
2019
, “
Magnetically Aligned Nanorods in Alginate Capsules (Maniacs): Soft Matter Tumbling Robots for Manipulation and Drug Delivery
,”
Micromachines
,
10
(
4
), p.
230
. 10.3390/mi10040230
11.
Niedert
,
E. E.
,
Bi
,
C.
,
Adam
,
G.
,
Lambert
,
E.
,
Solorio
,
L.
,
Goergen
,
C. J.
, and
Cappelleri
,
D. J.
,
2020
, “
A Tumbling Magnetic Microrobot System for Biomedical Applications
,”
Micromachines
,
11
(
9
), p.
861
. 10.3390/mi11090861
12.
Pawashe
,
C.
,
Floyd
,
S.
, and
Sitti
,
M.
,
2008
, “
Dynamic Modeling of Stick Slip Motion in An Untethered Magnetic Microrobot
,”
Proceedings of Robotics: Science and Systems (RSS)
,
Zurich, Switzerland
,
June 25–28
, pp.
286
293
.
13.
Pawashe
,
C.
,
Floyd
,
S.
, and
Sitti
,
M.
,
2009
, “
Modeling and Experimental Characterization of An Untethered Magnetic Micro-Robot
,”
Int. J. Rob. Res.
,
28
(
8
), pp.
1077
1094
. 10.1177/0278364909341413
14.
Xie
,
J.
, and
Chakraborty
,
N.
,
2016
, “
Rigid Body Dynamic Simulation with Line and Surface Contact
,”
Proceedings of IEEE International Conference on Simulation, Modeling, and Programming for Autonomous Robots (SIMPAR)
,
San Fransisco, CA
,
Dec. 13–16
, IEEE, pp.
9
15
.
15.
Xie
,
J.
, and
Chakraborty
,
N.
,
2018
, “
Rigid Body Dynamic Simulation with Multiple Convex Contact Patches
,”
Proceedings of ASME International Design Engineering Technical Conferences and Computers and Information in Engineering Conference (IDETC/MSNDC)
,
Quebec City, Canada
,
Aug. 26–29
, Vol.
51838
, ASME, p.
V006T09A002
.
16.
Xie
,
J.
, and
Chakraborty
,
N.
,
2019
, “
Rigid Body Motion Prediction with Planar Non-convex Contact Patch
,”
Proceedings of IEEE International Conference on Robotics and Automation (ICRA)
,
Montreal, Canada
,
May 20–24
, IEEE, pp.
7646
7652
.
17.
Xie
,
J.
,
Bi
,
C.
,
Cappelleri
,
D. J.
, and
Chakraborty
,
N.
,
2019
, “
Towards Dynamic Simulation Guided Optimal Design of Tumbling Microrobots
,”
Proceedings of ASME International Design Engineering Technical Conferences and Computers and Information in Engineering Conference (IDETC/MR)
,
Anaheim, CA
,
Aug. 18–21
, Vol.
59230
, ASME, p.
V05AT07A057
.
18.
Hu
,
W.
,
Lum
,
G. Z.
,
Mastrangeli
,
M.
, and
Sitti
,
M.
,
2018
, “
Small-scale Soft-bodied Robot with Multimodal Locomotion
,”
Nature
,
554
(
7690
), pp.
81
85
. 10.1038/nature25443
19.
Morozov
,
K. I.
,
Mirzae
,
Y.
,
Kenneth
,
O.
, and
Leshansky
,
A. M.
,
2017
, “
Dynamics of Arbitrary Shaped Propellers Driven by a Rotating Magnetic Field
,”
Phys. Rev. Fluids
,
2
(
4
), pp.
1
29
. 10.1103/PhysRevFluids.2.044202
20.
Facchinei
,
F.
, and
Pang
,
J.-S.
,
2007
,
Finite-Dimensional Variational Inequalities and Complementarity Problems
,
Springer Science & Business Media
,
Berlin/Heidelberg, Germany
.
21.
Lotstedt
,
P.
,
1982
, “
Mechanical Systems of Rigid Bodies Subject to Unilateral Constraints
,”
SIAM J. Appl. Math.
,
42
(
2
), pp.
281
296
. 10.1137/0142022
22.
Moreau
,
J. J.
,
1988
, “Unilateral Contact and Dry Friction in Finite Freedom Dynamics,”
Nonsmooth Mechanics and Applications
,
P. D.
Moreau
, and
J. J.
Panagiotopoulos
, eds.,
Springer
,
Berlin, Germany
, pp.
1
82
.
23.
Anitescu
,
M.
,
Cremer
,
J. F.
, and
Potra
,
F. A.
,
1996
, “
Formulating 3D Contact Dynamics Problems
,”
Mech. Struct. Mach.
,
24
(
4
), pp.
405
437
. 10.1080/08905459608905271
24.
Pang
,
J.-S.
, and
Trinkle
,
J. C.
,
1996
, “
Complementarity Formulations and Existence of Solutions of Dynamic Multi-Rigid-Body Contact Problems With Coulomb Friction
,”
Math. Program.
,
73
(
2
), pp.
199
226
. 10.1007/BF02592103
25.
Stewart
,
D. E.
, and
Trinkle
,
J. C.
,
1996
, “
An Implicit Time-Stepping Scheme for Rigid Body Dynamics With Inelastic Collisions and Coulomb Friction
,”
Int. J. Numer. Methods Eng.
,
39
(
15
), pp.
2673
2691
. 10.1002/(SICI)1097-0207(19960815)39:15<2673::AID-NME972>3.0.CO;2-I
26.
Pfeiffer
,
F.
, and
Glocker
,
C.
,
2008
,
Multibody Dynamics with Unilateral Contacts
,
Wiley Inc.
,
Hoboken, NJ
.
27.
Acary
,
V.
, and
Brogliato
,
B.
,
2008
,
Numerical Methods for Nonsmooth Dynamical Systems: Applications in Mechanics and Electronics
,
Springer Science & Business Media
,
Berlin/Heidelberg, Germany
.
28.
Drumwright
,
E.
, and
Shell
,
D. A.
,
2012
, “
Extensive Analysis of Linear Complementarity Problem (lcp) Solver Performance on Randomly Generated Rigid Body Contact Problems
,”
Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
,
Vilamoura, Algarve, Portugal
,
Oct. 7–12
, IEEE, pp.
5034
5039
.
29.
Todorov
,
E.
,
2014
, “
Convex and Analytically-invertible Dynamics with Contacts and Constraints: Theory and Implementation in Mujoco
,”
Proceedings of IEEE International Conference on Robotics and Automation (ICRA)
,
Hong Kong, China
,
Aug. 18–21
, IEEE, pp.
6054
6061
.
30.
Anitescu
,
M.
, and
Potra
,
F. A.
,
1997
, “
Formulating Dynamic Multi-rigid-body Contact Problems with Friction As Solvable Linear Complementarity Problems
,”
Nonlinear Dyn.
,
14
(
3
), pp.
231
247
. 10.1023/A:1008292328909
31.
Anitescu
,
M.
, and
Potra
,
F. A.
,
2002
, “
A Time-stepping Method for Stiff Multibody Dynamics with Contact and Friction
,”
Int. J. Numer. Methods Eng.
,
55
(
7
), pp.
753
784
. 10.1002/nme.512
32.
Tzitzouris
,
J. E.
,
2001
, “
Numerical Resolution of Frictional Multi-Rigid-Body Systems Via Fully Implicit Time-Stepping and Nonlinear Complementarity
,” Ph.D. thesis,
Johns Hopkins University
,
Baltimore, MD
.
33.
Chakraborty
,
N.
,
Berard
,
S.
,
Akella
,
S.
, and
Trinkle
,
J. C.
,
2014
, “
A Geometrically Implicit Time-Stepping Method for Multibody Systems With Intermittent Contact
,”
Int. J. Rob. Res.
,
33
(
3
), pp.
426
445
. 10.1177/0278364913501210
34.
Erdmann
,
M.
,
1994
, “
On a Representation of Friction in Configuration Space
,”
Int. J. Rob. Res.
,
13
(
3
), pp.
240
271
. 10.1177/027836499401300306
35.
Goyal
,
S.
,
Ruina
,
A.
, and
Papadopoulos
,
J.
,
1991
, “
Planar Sliding With Dry Friction Part 1. Limit Surface and Moment Function
,”
Wear
,
143
(
2
), pp.
307
330
. 10.1016/0043-1648(91)90104-3
36.
Howe
,
R. D.
, and
Cutkosky
,
M. R.
,
1996
, “
Practical Force-Motion Models for Sliding Manipulation
,”
Int. J. Rob. Res.
,
15
(
6
), pp.
557
572
. 10.1177/027836499601500603
37.
Murray
,
R. M.
,
Li
,
Z.
, and
Sastry
,
S. S.
,
1994
,
An Mathematical Introduction to Robotic Manipulation
,
CRC Press
,
Boca Raton, FL
.
38.
Fearing
,
R. S.
,
1995
, “
Survey of Sticking Effects for Micro Parts Handling
,”
Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems. Human Robot Interaction and Cooperative Robots
,
Pittsburgh, PA
,
Aug. 5–9
, Vol.
2
, IEEE, pp.
212
217
.
39.
Diller
,
E.
,
2011
, “
Micro-Scale Mobile Robotics
,”
Foundat. Trends Rob.
,
2
(
3
), pp.
143
259
. 10.1561/2300000023
40.
Arscott
,
S.
,
2014
, “
Su-8 As a Material for Lab-on-a-Chip-Based Mass Spectrometry
,”
Lab. Chip.
,
14
(
19
), pp.
3668
3689
. 10.1039/C4LC00617H
41.
Nemani
,
K. V.
,
Moodie
,
K. L.
,
Brennick
,
J. B.
,
Su
,
A.
, and
Gimi
,
B.
,
2013
, “
In Vitro and in Vivo Evaluation of Su-8 Biocompatibility
,”
Mater. Sci. Eng.: C
,
33
(
7
), pp.
4453
4459
. 10.1016/j.msec.2013.07.001
42.
Raj M
,
K.
, and
Chakraborty
,
S.
,
2020
, “
PDMS Microfluidics: A Mini Review
,”
J. Appl. Polym. Sci.
,
137
(
27
), p.
48958
. 10.1002/app.48958
43.
Goyal
,
S.
,
Ruina
,
A.
, and
Papadopoulos
,
J.
,
1991
, “
Planar Sliding With Dry Friction Part 1. Limit Surface and Moment Function
,”
Wear
,
143
(
2
), pp.
307
330
. 10.1016/0043-1648(91)90104-3
44.
Howe
,
R. D.
, and
Cutkosky
,
M. R.
,
1996
, “
Practical Force-Motion Models for Sliding Manipulation
,”
Int. J. Rob. Res.
,
15
(
6
), pp.
557
572
. 10.1177/027836499601500603
45.
Trinkle
,
J. C.
,
Pang
,
J. -S.
,
Sudarsky
,
S.
, and
Lo
,
G.
,
1997
, “
On Dynamic Multi-Rigid-Body Contact Problems With Coulomb Friction
,”
ZAMM-J. Appl. Math. Mech.
,
77
(
4
), pp.
267
279
. 10.1002/zamm.19970770411
46.
Trinkle
,
J. C.
,
Tzitzouris
,
J.
, and
Pang
,
J. -S.
,
2001
, “
Dynamic Multi-Rigid-Body Systems With Concurrent Distributed Contacts
,”
Philos. Trans. R. Soc. London A: Math., Phys. Eng. Sci.
,
359
(
1789
), pp.
2575
2593
. 10.1098/rsta.2001.0911
47.
Akin
,
S.
,
Gabor
,
T.
,
Jo
,
S.
,
Joe
,
H.
,
Tsai
,
J.-T.
,
Park
,
Y.
,
Lee
,
C. H.
,
Park
,
M. S.
, and
Jun
,
M. B.-G.
,
2020
, “
Dual Regime Spray Deposition Based Laser Direct Writing of Metal Patterns on Polymer Substrates
,”
ASME J. Micro Nano-Manuf.
,
8
(
2
), p.
024511
. 10.1115/1.4046282
You do not currently have access to this content.