Abstract

Retinal microsurgery requires the precise manipulation of delicate tissue in the interior of the eye. Smart surgical instruments with dexterous tip and force sensing capabilities can permit surgeons to perform more flexible surgical procedures and obtain imperceptible force information, thereby improving the safety and efficiency of microsurgery. In this study, we present an intraocular continuum manipulator with three degrees-of-freedom (DOF) force sensing capabilities. A contact-aided compliant mechanism based on cutting superelastic Nitinol tubes is used to provide high dexterity. It enables two rotational DOFs at the distal end of the manipulator. Fiber Bragg grating (FBG) fibers are used to provide high-resolution force measurements. Moreover, a novel Nitinol flexure was designed to achieve high axial force sensitivity. The experimental results show that the maximum bending angle of the dexterous tip is more than ±45 deg for each DOF with high repeatability. In addition, the experimental results demonstrate that the proposed force sensor can provide sub-millinewton resolution. The manipulator has also been validated with an artificial eye model, demonstrating the potential clinical value of the manipulator for retinal microsurgery.

References

1.
He
,
X.
,
Handa
,
J.
,
Gehlbach
,
P.
,
Taylor
,
R.
, and
Iordachita
,
I.
,
2014
, “
A Submillimetric 3-DOF Force Sensing Instrument With Integrated Fiber Bragg Grating for Retinal Microsurgery
,”
IEEE Trans. Biomedical Eng.
,
61
(
2
), pp.
522
534
. 10.1109/TBME.2013.2283501
2.
Urias
,
M. G.
,
Patel
,
N.
,
Ebrahimi
,
A.
,
Iordachita
,
I.
, and
Gehlbach
,
P. L.
,
2020
, “
Robotic Retinal Surgery Impacts on Scleral Forces: In Vivo Study
,”
Transl. Vis. Sci. Technol.
,
9
(
10
), pp.
2
2
. 10.1167/tvst.9.10.2
3.
Edwards
,
T. L.
,
Xue
,
K.
,
Meenink
,
H. C. M.
,
Beelen
,
M. J.
,
Naus
,
G. J. L.
,
Simunovic
,
M. P.
,
Latasiewicz
,
M.
,
Farmery
,
A. D.
,
de Smet
,
M. D.
, and
MacLaren
,
R. E.
,
2018
, “
First-in-Human Study of the Safety and Viability of Intraocular Robotic Surgery
,”
Nature Biomedical Eng.
,
2
(
9
), pp.
649
656
. 10.1038/s41551-018-0248-4
4.
Gijbels
,
A.
,
Vander Poorten
,
E. B.
,
Stalmans
,
P.
,
Van Brussel
,
H.
, and
Reynaerts
,
D.
,
2014
, “
Design of a Teleoperated Robotic System for Retinal Surgery
,”
IEEE International Conference on Robotics and Automation (ICRA)
,
Hong Kong, China
,
May 31–June 5
, pp.
2357
2363
.
5.
Lin
,
F. Y.
,
Bergeles
,
C.
, and
Yang
,
G. Z.
,
2015
, “
Biometry-Based Concentric Tubes Robot for Vitreoretinal Surgery
,”
Proceedings Annual International Conference of the IEEE Engineering in Medicine and Biology Society
,
Milano, Italy
,
Aug. 25–29
, pp.
5280
5284
.
6.
He
,
C.
,
Patel
,
N.
,
Shahbazi
,
M.
,
Yang
,
Y.
,
Gehlbach
,
P.
,
Kobilarov
,
M.
, and
Iordachita
,
I.
,
2019
, “
Toward Safe Retinal Microsurgery: Development and Evaluation of an RNN-Based Active Interventional Control Framework
,”
IEEE Trans. Biomedical Eng.
,
67
(
4
), pp.
966
977
. 10.1109/TBME.2019.2926060
7.
Burgner
,
J.
,
Rucker
,
D. C.
,
Gilbert
,
H. B.
,
Swaney
,
P. J.
,
Russell
,
P. T.
,
Weaver
,
K. D.
, and
Webster
,
R. J.
,
2013
, “
A Telerobotic System for Transnasal Surgery
,”
IEEE/ASME Trans. Mechatron.
,
19
(
3
), pp.
996
1006
. 10.1109/TMECH.2013.2265804
8.
Butler
,
E. J.
,
Hammond-Oakley
,
R.
,
Chawarski
,
S.
,
Gosline
,
A. H.
,
Codd
,
P.
,
Anor
,
T.
, and
Lock
,
J.
,
2012
, “
Robotic Neuro-Emdoscope With Concentric Tube Augmentation
,”
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
,
Vilamoura, Portugal
,
Oct. 7–12
, pp.
2941
2946
.
9.
Kudryavtsev
,
A. V.
,
Chikhaoui
,
M. T.
,
Liadov
,
A.
,
Rougeot
,
P.
,
Spindler
,
F.
,
Rabenorosoa
,
K.
,
Burgner-Kahrs
,
J.
,
Tamadazte
,
B.
, and
Andreff
,
N.
,
2018
, “
Eye-in-Hand Visual Servoing of Concentric Tube Robots
,”
IEEE Rob. Autom. Lett.
,
3
(
3
), pp.
2315
2321
. 10.1109/LRA.2018.2807592
10.
Wei
,
W.
, and
Simaan
,
N.
,
2012
, “
Modeling, Force Sensing, and Control of Flexible Cannulas for Microstent Delivery
,”
ASME J. Dyn. Syst. Meas. Contr.
,
134
(
4
), pp.
1
12
. 10.1115/1.4006080
11.
Gijbels
,
A.
,
Wouters
,
N.
,
Stalmans
,
P.
,
Van Brussel
,
H.
,
Reynaerts
,
D.
, and
Vander Poorten
,
E.
,
2013
, “
Design and Realisation of a Novel Robotic Manipulator for Retinal Surgery
,”
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
,
Tokyo, Japan
,
Nov. 3–7
, pp.
3598
3603
.
12.
Bergeles
,
C.
,
Gosline
,
A. H.
,
Vasilyev
,
N. V.
,
Codd
,
P. J.
,
Pedro
,
J.
, and
Dupont
,
P. E.
,
2015
, “
Concentric Tube Robot Design and Optimization Based on Task and Anatomical Constraints
,”
IEEE Trans. Rob.
,
31
(
1
), pp.
67
84
. 10.1109/TRO.2014.2378431
13.
He
,
X.
,
Van Geirt
,
V.
,
Gehlbach
,
P.
,
Taylor
,
R.
, and
Iordachita
,
I.
,
2015
, “
IRIS: Integrated Robotic Intraocular Snake
,”
IEEE International Conference on Robotics and Automation (ICRA)
,
Seattle, WA
,
May 26–30
, pp.
1764
1769
.
14.
Jeong
,
S.
,
Chitalia
,
Y.
, and
Desai
,
J. P.
,
2020
, “
Design, Modeling, and Control of a Coaxially Aligned Steerable (COAST) Guidewire Robot
,”
IEEE Rob. Autom. Lett.
,
5
(
3
), pp.
4947
4954
. 10.1109/LRA.2020.3004782
15.
Chitalia
,
Y.
,
Jeong
,
S.
,
Deaton
,
N.
,
Chern
,
J. J.
, and
Desai
,
J. P.
,
2020
, “
Design and Kinematics Analysis of a Robotic Pediatric Neuroendoscope Tool Body
,”
IEEE/ASME Trans. Mech.
,
25
(
2
), pp.
985
995
. 10.1109/TMECH.2020.2967748
16.
Pattanshetti
,
S.
, and
Ryu
,
S. C.
,
2018
, “
Design and Fabrication of Laser-Machined Hinge Joints on Miniature Tubes for Steerable Medical Devices
,”
ASME J. Mech. Rob.
,
10
(
1
), p.
011002
. 10.1115/1.4038440
17.
York
,
P. A.
,
Swaney
,
P. J.
,
Gilbert
,
H. B.
, and
Webster
,
R. J.
,
2015
, “
A Wrist for Needle-Sized Surgical Robots
,”
IEEE International Conference on Robotics and Automation (ICRA)
,
Seattle, WA
,
May 26–30
, pp.
1776
1781
.
18.
Francis
,
P.
,
Eastwood
,
K. W.
,
Bodani
,
V.
,
Price
,
K.
,
Upadhyaya
,
K.
,
Podolsky
,
D.
, and
Drake
,
J.
,
2017
, “
Miniaturized Instruments for the Da Vinci Research Kit: Design and Implementation of Custom Continuum Tools
,”
IEEE Rob. Autom. Mag.
,
24
(
2
), pp.
24
33
. 10.1109/MRA.2017.2680547
19.
Gupta
,
P. K.
,
Jensen
,
P. S.
, and
de Juan
,
E.
,
1999
, “
Surgical Forces and Tactile Perception During Retinal Microsurgery
,”
International Conference on Medical Image Computing and Computer-Assisted Intervention
,
Berlin, Germany
,
Sept. 19–22
, pp.
1218
1225
.
20.
Berkelman
,
P. J.
,
Whitcomb
,
L. L.
,
Taylor
,
R. H.
, and
Jensen
,
P.
,
2003
, “
A Miniature Microsurgical Instrument Tip Force Sensor for Enhanced Force Feedback During Robot-Assisted Manipulation
,”
IEEE Trans. Rob. Autom.
,
19
(
5
), pp.
917
921
. 10.1109/TRA.2003.817526
21.
Iordachita
,
I.
,
Sun
,
Z.
,
Balicki
,
M.
,
Kang
,
J. U.
,
Phee
,
S. J.
,
Handa
,
J.
, and
Taylor
,
R.
,
2009
, “
A Sub-Millemetric, 0.25 mN Resolution Fully Integrated Fiber-Optic Force Sensing Tool for Retinal Microsurgery
,”
Int. J. Comput. Assist. Radiol. Surg.
,
4
(
4
), pp.
383
390
. 10.1007/s11548-009-0301-6
22.
Gonenc
,
B.
,
Taylor
,
R. H.
,
Iordachita
,
I.
,
Gehlbach
,
P.
, and
Handa
,
J.
,
2014
, “
Force-Sensing Microneedle for Assisted Retinal Vein Cannulation
,”
IEEE Sensors
,
Valencia, Spain
,
Nov. 2–5
, pp.
698
701
.
23.
Li
,
T.
,
Shi
,
C.
, and
Ren
,
H.
,
2018
, “
Three-Dimensional Catheter Distal Force Sensing for Cardiac Ablation Based on Fiber Bragg Grating
,”
IEEE/ASME Trans. Mech.
,
23
(
5
), pp.
2316
2327
. 10.1109/TMECH.2018.2867472
24.
Gao
,
A.
,
Zhou
,
Y.
,
Cao
,
L.
,
Wang
,
Z.
, and
Liu
,
H.
,
2018
, “
Fiber Bragg Grating-Based Triaxial Force Sensor With Parallel Flexure Hinges
,”
IEEE Trans. Ind. Electron.
,
65
(
10
), pp.
8215
8223
. 10.1109/TIE.2018.2798569
25.
Song
,
J.
,
Gonenc
,
B.
,
Guo
,
J.
, and
Iordachita
,
I.
,
2017
, “
Intraocular Snake Integrated With the Steady-Hand Eye Robot for Assisted Retinal Microsurgery
,”
IEEE International Conference on Robotics and Automation (ICRA)
,
Singapore
,
May 29–June 23
, pp.
6724
6729
.
26.
“Ophthalmic Instruments Catalogue”
, https://www.storzeye.eu/our-instruments
You do not currently have access to this content.