Abstract

We present a principled method for motion prediction via dynamic simulation for rigid bodies in intermittent contact with each other where the contact region is a planar non-convex contact patch. Such methods are useful in planning and controlling for robotic manipulation. The planar non-convex contact patch can either be a topologically connected set or a disconnected set. Most works in rigid body dynamic simulation assume that the contact between objects is a point contact, which may not be valid in many applications. In this paper, using the convex hull of the contact patch, we build on our recent work on simulating rigid bodies with convex contact patches for simulating motion of objects with planar non-convex contact patches. We formulate a discrete-time mixed complementarity problem to solve the contact detection and integration of the equations of motion simultaneously. We solve for the equivalent contact point (ECP) and contact impulse of each contact patch simultaneously along with the state, i.e., configuration and velocity of the objects. We prove that although we are representing a patch contact by an equivalent point, our model for enforcing non-penetration constraints ensures that there is no artificial penetration between the contacting rigid bodies. We provide empirical evidence to show that our method can seamlessly capture transition among different contact modes like patch contact, multiple or single point contact.

References

1.
Reznik
,
D.
, and
Canny
,
J.
,
1998
, “
A Flat Rigid Plate is a Universal Planar Manipulator
,”
Proceedings of IEEE International Conference on Robotics and Automation (ICRA)
, Vol.
2
,
Leuven, Belgium
,
May 16–21
,
IEEE
, pp.
1471
1477
.
2.
Song
,
P.
,
Trinkle
,
J. C.
,
Kumar
,
V.
, and
Pang
,
J.-S.
,
2004
, “
Design of Part Feeding and Assembly Processes With Dynamics
,”
Proceedings of IEEE International Conference on Robotics and Automation (ICRA)
, Vol.
1
,
New Orleans, LA
,
Apr. 26–May 1
,
IEEE
, pp.
39
44
.
3.
Vose
,
T. H.
,
Umbanhowar
,
P.
, and
Lynch
,
K. M.
,
2009
, “
Friction-Induced Lines of Attraction and Repulsion for Parts Sliding on an Oscillated Plate
,”
IEEE Trans. Autom. Sci. Eng.
,
6
(
4
), pp.
685
699
. 10.1109/TASE.2009.2021360
4.
Berard
,
S.
,
Nguyen
,
B.
,
Anderson
,
K.
, and
Trinkle
,
J.
,
2010
, “
Sources of Error in a Simulation of Rigid Parts on a Vibrating Rigid Plate
,”
ASME J. Comput. Nonlinear Dyn.
,
5
(
4
), p.
041003
. 10.1115/1.4001820
5.
Xie
,
J.
,
Bi
,
C.
,
Cappelleri
,
D. J.
, and
Chakraborty
,
N.
,
2019
, “
Towards Dynamic Simulation Guided Optimal Design of Tumbling Microrobots
,”
Proceedings of ASME International Design Engineering Technical Conferences and Computers and Information in Engineering Conference (IDETC/MR)
, Vol.
59230
,
Anaheim, CA
,
Aug. 18–21
,
ASME
, p.
V05AT07A057
.
6.
Dafle
,
N. C.
,
Rodriguez
,
A.
,
Paolini
,
R.
,
Tang
,
B.
,
Srinivasa
,
S. S.
,
Erdmann
,
M.
,
Mason
,
M. T.
,
Lundberg
,
I.
,
Staab
,
H.
, and
Fuhlbrigge
,
T.
,
2014
, “
Extrinsic Dexterity: In-hand Manipulation With External Forces
,”
Proceedings of IEEE International Conference on Robotics and Automation (ICRA)
,
Hong Kong, China
,
Aug. 18–21
,
IEEE
, pp.
1578
1585
.
7.
Xie
,
J.
, and
Chakraborty
,
N.
,
2016
, “
Rigid Body Dynamic Simulation With Line and Surface Contact
,”
Proceedings of 2016 IEEE International Conference on Simulation, Modeling, and Programming for Autonomous Robots (SIMPAR)
,
San Francisco, CA
,
Dec. 13–16
,
IEEE
, pp.
9
15
.
8.
Xie
,
J.
, and
Chakraborty
,
N.
,
2018
, “
Rigid Body Dynamic Simulation With Multiple Convex Contact Patches
,”
Proceedings of ASME International Design Engineering Technical Conferences and Computers and Information in Engineering Conference (IDETC/MSNDC)
, Vol.
51838
,
Quebec City, Canada
,
Aug. 26–29
,
ASME
, p.
V006T09A002
.
9.
Haug
,
E. J.
,
Wu
,
S. C.
, and
Yang
,
S. M.
,
1986
, “
Dynamics of Mechanical Systems With Coulomb Friction, Stiction, Impact and Constraint Addition–Deletion Theory
,”
Mech. Mach. Theory
,
21
(
5
), pp.
401
406
. 10.1016/0094-114X(86)90088-1
10.
Cottle
,
R. W.
,
Pang
,
J. -S.
, and
Stone
,
R. E.
,
2009
,
The Linear Complementarity Problem
, Vol.
60
,
SIAM
,
Philadelphia
.
11.
Trinkle
,
J. C.
,
Pang
,
J. -S.
,
Sudarsky
,
S.
, and
Lo
,
G.
,
1997
, “
On Dynamic Multi-Rigid-Body Contact Problems With Coulomb Friction
,”
ZAMM-J. Appl. Math. Mech./Z. Angew. Math. Mech.
,
77
(
4
), pp.
267
279
. 10.1002/zamm.19970770411
12.
Pfeiffer
,
F.
, and
Glocker
,
C.
,
2008
,
Multibody Dynamics With Unilateral Contacts
,
John Wiley & Sons
,
Hoboken, NJ
.
13.
Xie
,
J.
, and
Chakraborty
,
N.
,
2018
, “
Dynamic Model of Planar Sliding
,”
Proceedings of International Workshop on the Algorithmic Foundations of Robotics (WAFR), SPAR
,
Merida, Mexico
,
Dec. 9–11
,
Springer
, pp.
458
473
.
14.
Xie
,
J.
, and
Chakraborty
,
N.
,
2019
, “
Rigid Body Motion Prediction With Planar Non-convex Contact Patch
,”
Proceedings of IEEE International Conference on Robotics and Automation (ICRA)
,
Montreal, Canada
,
May 20–24
,
IEEE
, pp.
7646
7652
.
15.
Marsden
,
J. E.
, and
West
,
M.
,
2001
, “
Discrete Mechanics and Variational Integrators
,”
Acta Numer.
,
10
(
1
), pp.
357
514
. 10.1017/S096249290100006X
16.
Johnson
,
E. R.
, and
Murphey
,
T. D.
,
2009
, “
Scalable Variational Integrators for Constrained Mechanical Systems in Generalized Coordinates
,”
IEEE Trans. Rob.
,
25
(
6
), p.
1249
. 10.1109/TRO.2009.2032955
17.
Kobilarov
,
M.
,
Crane
,
K.
, and
Desbrun
,
M.
,
2009
, “
Lie Group Integrators for Animation and Control of Vehicles
,”
ACM Trans. Graph.
,
28
(
2
), pp.
1
14
. 10.1145/1516522.1516527
18.
Facchinei
,
F.
, and
Pang
,
J.-S.
,
2007
,
Finite-Dimensional Variational Inequalities and Complementarity Problems
,
Springer Science & Business Media
,
Berlin/Heidelberg
.
19.
Lötstedt
,
P.
,
1982
, “
Mechanical Systems of Rigid Bodies Subject to Unilateral Constraints
,”
SIAM J. Appl. Math.
,
42
(
2
), pp.
281
296
. 10.1137/0142022
20.
Anitescu
,
M.
,
Cremer
,
J. F.
, and
Potra
,
F. A.
,
1996
, “
Formulating 3d Contact Dynamics Problems
,”
Mech. Struct. Mach.
,
24
(
4
), pp.
405
437
. 10.1080/08905459608905271
21.
Pang
,
J.-S.
, and
Trinkle
,
J. C.
,
1996
, “
Complementarity Formulations and Existence of Solutions of Dynamic Multi-Rigid-Body Contact Problems With Coulomb Friction
,”
Math. Program.
,
73
(
2
), pp.
199
226
. 10.1007/BF02592103
22.
Stewart
,
D. E.
, and
Trinkle
,
J. C.
,
1996
, “
An Implicit Time-Stepping Scheme for Rigid Body Dynamics With Inelastic Collisions and Coulomb Friction
,”
Int. J. Numer. Methods Eng.
,
39
(
15
), pp.
2673
2691
. 10.1002/(SICI)1097-0207(19960815)39:15<2673::AID-NME972>3.0.CO;2-I
23.
Liu
,
T.
, and
Wang
,
M. Y.
,
2005
, “
Computation of Three-Dimensional Rigid-Body Dynamics With Multiple Unilateral Contacts Using Time-Stepping and Gauss-Seidel Methods
,”
IEEE Trans. Autom. Sci. Eng.
,
2
(
1
), pp.
19
31
. 10.1109/TASE.2004.840074
24.
Drumwright
,
E.
, and
Shell
,
D. A.
,
2012
, “
Extensive Analysis of Linear Complementarity Problem (LCP) Solver Performance on Randomly Generated Rigid Body Contact Problems
,”
Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
,
Vilamoura, Algarve, Portugal
,
Oct. 7–12
,
IEEE
, pp.
5034
5039
.
25.
Todorov
,
E.
,
2014
, “
Convex and Analytically-Invertible Dynamics With Contacts and Constraints: Theory and Implementation in Mujoco
,”
Proceedings of IEEE International Conference on Robotics and Automation (ICRA)
,
Hong Kong, China
,
Aug. 18–21
,
IEEE
, pp.
6054
6061
.
26.
Studer
,
C.
,
2009
,
Numerics of Unilateral Contacts and Friction: Modeling and Numerical Time Integration in Non-smooth Dynamics
, Vol.
47
,
Springer Science & Business Media
,
Berlin/Heidelberg
.
27.
Capobianco
,
G.
, and
Eugster
,
S.
,
2018
, “
Time Finite Element Based Moreau-Type Integrators
,”
Int. J. Numer. Methods Eng.
,
114
(
3
), pp.
215
231
. 10.1002/nme.5741
28.
Brüls
,
O.
,
Acary
,
V.
, and
Cardona
,
A.
,
2018
, “On the Constraints Formulation in the Nonsmooth Generalized-α Method,”
Advanced Topics in Nonsmooth Dynamics: Transactions of the European Network for Nonsmooth Dynamics
,
R.
Leine
,
V.
Acary
, and
O.
Brüls
, eds.,
Springer International Publishing
,
Cham
, pp.
335
374
.
29.
Anitescu
,
M.
, and
Potra
,
F. A.
,
2002
, “
A Time-Stepping Method for Stiff Multibody Dynamics With Contact and Friction
,”
Int. J. Numer. Methods Eng.
,
55
(
7
), pp.
753
784
. 10.1002/nme.512
30.
Chakraborty
,
N.
,
Berard
,
S.
,
Akella
,
S.
, and
Trinkle
,
J.
,
2014
, “
A Geometrically Implicit Time-Stepping Method for Multibody Systems With Intermittent Contact
,”
Int. J. Rob. Res.
,
33
(
3
), pp.
426
445
. 10.1177/0278364913501210
31.
Brogliato
,
B.
,
2000
,
Impacts in Mechanical Systems: Analysis and Modelling
, Vol.
551
,
Springer Science & Business Media
,
Berlin/Heidelberg
.
32.
Jia
,
Y.-B.
,
2013
, “
Three-Dimensional Impact: Energy-Based Modeling of Tangential Compliance
,”
Int. J. Rob. Res.
,
32
(
1
), pp.
56
83
. 10.1177/0278364912457832
33.
Tavakoli
,
A.
,
Gharib
,
M.
, and
Hurmuzlu
,
Y.
,
2012
, “
Collision of Two Mass Baton With Massive External Surfaces
,”
ASME J. Appl. Mech.
,
79
(
5
), p.
051019
. 10.1115/1.4006456
34.
Chatterjee
,
A.
, and
Ruina
,
A.
,
1998
, “
A New Algebraic Rigid-Body Collision Law Based on Impulse Space Considerations
,”
ASME J. Appl. Mech.
,
65
(
4
), pp.
939
951
. 10.1115/1.2791938
35.
Anitescu
,
M.
, and
Potra
,
F. A.
,
1997
, “
Formulating Dynamic Multi-Rigid-Body Contact Problems With Friction as Solvable Linear Complementarity Problems
,”
Nonlinear Dyn.
,
14
(
3
), pp.
231
247
. 10.1023/A:1008292328909
36.
Tzitzouris
,
J. E.
,
2001
, “
Numerical Resolution of Frictional Multi-Rigid-Body Systems Via Fully Implicit Time-Stepping and Nonlinear Complementarity
,”
PhD thesis
,
Johns Hopkins University
,
Baltimore, MD
.
37.
Coumans
,
E.
, “
Bullet Physics Engine for Rigid Body Dynamics
,” http://bulletphysics.org/
38.
Smith
,
R.
, “
Open Dynamics Engine Ode. Multibody Dynamics Simulation Software
,” http://www.ode.org/
39.
Todorov
,
E.
,
Erez
,
T.
, and
Tassa
,
Y.
,
2012
, “
Mujoco: A Physics Engine for Model-Based Control
,”
Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
,
Vilamoura, Algarve, Portugal
,
Oct. 7–12
,
IEEE
, pp.
5026
5033
.
40.
Tasora
,
A.
,
Serban
,
R.
,
Mazhar
,
H.
,
Pazouki
,
A.
,
Melanz
,
D.
,
Fleischmann
,
J.
,
Taylor
,
M.
,
Sugiyama
,
H.
, and
Negrut
,
D.
,
2015
, “
Chrono: An Open Source Multi-physics Dynamics Engine
,”
Proceedings of International Conference on High Performance Computing in Science and Engineering (HPCSE)
,
Solan, Czech Republic
,
May 25–28
,
Springer
, pp.
19
49
.
41.
Lee
,
J.
,
Grey
,
M. X.
,
Ha
,
S.
,
Kunz
,
T.
,
Jain
,
S.
,
Ye
,
Y.
,
Srinivasa
,
S. S.
,
Stilman
,
M.
, and
Liu
,
C. K.
,
2018
, “
Dart: Dynamic Animation and Robotics Toolkit
,”
J. Open Source Softw.
,
3
(
22
), p.
500
. 10.21105/joss.00500
42.
Berard
,
S.
,
Trinkle
,
J.
,
Nguyen
,
B.
,
Roghani
,
B.
,
Fink
,
J.
, and
Kumar
,
V.
,
2007
, “
davinci Code: A Multi-model Simulation and Analysis Tool for Multi-body Systems
,”
Proceedings of IEEE International Conference on Robotics and Automation (ICRA)
,
Roma, Italy
,
Apr. 10–14
,
IEEE
, pp.
2588
2593
.
43.
Rao
,
A.
,
2005
,
Dynamics of Particles and Rigid Bodies: A Systematic Approach
,
Cambridge University Press
,
Cambridge
.
44.
Moreau
,
J. J.
,
1988
, “Unilateral Contact and Dry Friction in Finite Freedom Dynamics,”
Nonsmooth Mechanics and Applications
,
P. D.
Moreau
, and
J. J.
Panagiotopoulos
, eds.,
Springer
,
Vienna
, pp.
1
82
.
45.
Goyal
,
S.
,
Ruina
,
A.
, and
Papadopoulos
,
J.
,
1991
, “
Planar Sliding With Dry Friction Part 1. Limit Surface and Moment Function
,”
Wear
,
143
(
2
), pp.
307
330
. 10.1016/0043-1648(91)90104-3
46.
Howe
,
R. D.
, and
Cutkosky
,
M. R.
,
1996
, “
Practical Force-Motion Models for Sliding Manipulation
,”
Int. J. Rob. Res.
,
15
(
6
), pp.
557
572
. 10.1177/027836499601500603
47.
Trinkle
,
J. C.
,
Tzitzouris
,
J.
, and
Pang
,
J. -S.
,
2001
, “
Dynamic Multi-Rigid-Body Systems With Concurrent Distributed Contacts
,”
Philos. Trans. R. Soc. Lond. A: Math. Phys. Eng. Sci.
,
359
(
1789
), pp.
2575
2593
. 10.1098/rsta.2001.0911
48.
Xie
,
J.
, and
Chakraborty
,
N.
, “
Videos of the Simulation Scenarios
,” https://youtu.be/T7zV5pEPBeY
You do not currently have access to this content.