Abstract

This paper proposes a novel two-axis solar tracker with a redundant parallel mechanism and investigates the distribution method of driving torque. In view of the difference between the singular configuration of the redundant parallel mechanisms and that of the corresponding non-redundant ones, an index related to the minimum singular value of the Jacobian matrix is used to indicate the position of the singular configuration relative to the boundaries of the required workspace. The driving torque and energy consumption can be optimized with this index. Based on the fact that the direction of driving torque is opposite to that of rotor in most of the running processes, a distribution method of driving torque with the minimum energy consumption for the redundant parallel solar tracker is proposed. The distribution method is compared with the minimum norm solution which is adopted by the conventional redundant parallel mechanism. And energy consumption can be significantly reduced by adopting this method. In addition, the workspace and energy consumption of the redundant solar tracker and its non-redundant counterpart are compared. The results show that the redundant solar tracker has a larger workspace and lower energy consumption.

References

1.
Seme
,
S.
,
Štumberger
,
B.
,
Hadžiselimović
,
M.
, and
Sredenšek
,
K.
,
2020
, “
Solar Photovoltaic Tracking Systems for Electricity Generation: A Review
,”
Energies
,
13
(
16
), p.
4224
.
2.
Lovegrove
,
K.
,
Burgess
,
G.
, and
Pye
,
J.
,
2011
, “
A New 500 m(2) Paraboloidal Dish Solar Concentrator
,”
Sol. Energy
,
85
(
4
), pp.
620
626
.
3.
Singh
,
P.
,
Singh
,
S. N.
,
Lal
,
M.
, and
Husain
,
M.
,
2008
, “
Temperature Dependence of I-V Characteristics and Performance Parameters of Silicon Solar Cell
,”
Sol. Energy Mater. Sol. Cells
,
92
(
12
), pp.
1611
1616
.
4.
Agee
,
J. T.
,
Obok-Opok
,
A.
, and
de Lazzer
,
M.
,
2007
, “
Solar Tracker Technologies: Market Trends and Field Applications
,”
International Conference on Engineering Research and Development; Advances in Materials and Systems Technologies
,
Benin City, Nigeria
, Vol.
18–19
, pp.
339
344
.
5.
Altuzarra
,
O.
,
Seras
,
I.
,
Macho
,
E.
, and
Aginaga
,
J.
,
2013
, “A Low Energy Consumption Solar Tracker Based in Parallel Kinematics,”
Romansy 19–Robot Design, Dynamics and Control
,
Pergamon
,
Oxford
, pp.
69
76
.
6.
Lorenzo
,
E.
,
Pérez
,
M.
,
Ezpeleta
,
A.
, and
Acedo
,
J.
,
2002
, “
Design of Tracking Photovoltaic Systems With a Single Vertical Axis
,”
Prog. Photovoltaics Res. Appl.
,
10
(
8
), pp.
533
543
.
7.
Chin
,
C. S.
,
Babu
,
A.
, and
McBride
,
W.
,
2011
, “
Design, Modeling and Testing of a Standalone Single Axis Active Solar Tracker Using MATLAB/Simulink
,”
Renewable Energy
,
36
(
11
), pp.
3075
3090
.
8.
Alexandru
,
C.
, and
Pozna
,
C.
,
2008,
Different Tracking Strategies for Optimizing the Energetic Efficiency of a Photovoltaic System
,”
Proceedings of IEEE International Conference on Automation, Quality and Testing, Robotics
,
May
, Vol.
3
, pp.
434
439
.
9.
Zhao
,
Z. M.
,
Yuan
,
X. Y.
,
Guo
,
Y.
,
Xu
,
F.
, and
Li
,
Z. G.
,
2010
, “
Modelling and Simulation of a Two-Axis Tracking System
,”
Proc. Inst. Mech. Eng. Part I J. Syst. Control Eng.
,
224
(
2
), pp.
125
137
.
10.
Mousazadeh
,
H.
,
Keyhani
,
A.
,
Javadi
,
A.
,
Mobli
,
H.
,
Abrinia
,
K.
, and
Sharifi
,
A.
,
2009
, “
A Review of Principle and Sun-Tracking Methods for Maximizing Solar Systems Output
,”
Renewable Sustainable Energy Rev.
,
13
(
8
), pp.
1800
1818
.
11.
Wu
,
J.
,
Zhang
,
B.
, and
Wang
,
L.
,
2016
, “
Optimum Design and Performance Comparison of a Redundantly Actuated Solar Tracker and Its Nonredundant Counterpart
,”
Sol. Energy
,
127
, pp.
36
47
.
12.
Wu
,
J.
,
Yu
,
G.
,
Gao
,
Y.
, and
Wang
,
L.
,
2018
, “
Mechatronics Modeling and Vibration Analysis of a 2-DOF Parallel Manipulator in a 5-DOF Hybrid Machine Tool
,”
Mech. Mach. Theory
,
121
, pp.
430
445
.
13.
Wu
,
J.
,
Wang
,
J.
,
Wang
,
L.
, and
Li
,
T.
,
2009
, “
Dynamics and Control of a Planar 3-DOF Parallel Manipulator With Actuation Redundancy
,”
Mech. Mach. Theory
,
44
(
4
), pp.
835
849
.
14.
Sun
,
T.
,
Lian
,
B.
,
Song
,
Y.
, and
Feng
,
L.
,
2019
, “
Elasto-dynamic Optimization of a 5-dof Parallel Kinematic Machine Considering Parameter Uncertainty
,”
IEEE/ASME Trans. Mechatron.
,
24
(
1
), pp.
315
325
.
15.
Liang
,
D.
,
Song
,
Y.
,
Sun
,
T.
, and
Jin
,
X.
,
2018
, “
Dynamic Modeling and Hierarchical Compound Control of a Novel 2-dof Flexible Parallel Manipulator With Multiple Actuation Modes
,”
Mech. Syst. Sig. Process.
,
103
, pp.
413
439
.
16.
Zhang
,
D.
, and
Wei
,
B.
,
2017
, “
Dynamic Balancing of Robotic Mechanisms via Reconfiguration and Integration Design
,”
Int. J. Rob. Autom.
,
32
(
6
), pp.
551
559
.
17.
Tang
,
H.
,
Zhang
,
D.
,
Guo
,
S.
,
Qu
,
H.
, and
Huang
,
G.
,
2018
, “
Kinematics Analysis of a Novel 2R1 T Parallel Mechanism
,”
Int. J. Rob. Autom.
,
33
(
2
), pp.
127
140
.
18.
Liang
,
D.
,
Song
,
Y.
, and
Sun
,
T.
,
2017
, “
Nonlinear Dynamic Modeling and Performance Analysis of a Redundantly Actuated Parallel Manipulator With Multiple Actuation Modes Based on FMD Theory
,”
Nonlinear Dyn.
,
89
(
1
), pp.
391
428
.
19.
Cammarata
,
A.
,
2015
, “
Optimized Design of a Large-Workspace 2-DOF Parallel Robot for Solar Tracking Systems
,”
Mech. Mach. Theory
,
83
, pp.
175
186
.
20.
Wu
,
J.
,
Wang
,
J.
, and
You
,
Z.
,
2010
, “
An Overview of Dynamic Parameter Identification of Robots
,”
Rob. Comput. Integr. Manuf.
,
26
(
5
), pp.
414
419
.
21.
Ramkumar
,
R.
,
Karthikeyan
,
C.
, and
Dash
,
A. K.
,
2019
, “
A New Workspace Analysis Method for 6-DOF 3-RRRS Parallel Manipulators
,”
Int. J. Rob. Autom.
,
34
(
2
), pp.
135
145
.
22.
Wen
,
K. F.
, and
Gosselin
,
C. M.
,
2020
, “
Forward Kinematic Analysis of Kinematically Redundant Hybrid Parallel Robots
,”
ASME J. Mech. Rob.
,
12
(
6
), pp.
1
11
.
23.
Sun
,
T.
,
Song
,
Y.
,
Li
,
Y.
, and
Zhang
,
J.
,
2010
, “
Workspace Decomposition Based Dimensional Synthesis of a Novel Hybrid Reconfigurable Robot
,”
ASME J. Mech. Rob.
,
2
(
3
), p.
031009
.
You do not currently have access to this content.