Abstract

Efficient and economical processing of large-scale structural parts is in increasing need and is also a challenging issue. In this paper, an adsorption machining robot for processing of large-scale structural parts is presented. It has potential advantages in flexible, efficient, and economical processing of large-scale structural parts because of the adsorption ability. Stiffness is one of the most important performance for machining robots. In order to investigate the stiffness of the robot in the workspace, the kinematics of the adsorption manipulator, the five-axis machining manipulator, and the adsorption machining robot is derived step by step. Then with the help of finite element analysis (FEA), a stiffness modeling method considering the compliance of the base is proposed. A stiffness isotropy index is put forward to evaluate the robot’s overall stiffness performance by taking all possible working conditions into consideration. Based on the index, stiffness evaluation in the reachable workspace is carried out and an optimized workspace is identified considering the overall stiffness magnitude, stiffness isotropy, and workspace volume, which will be used in the machining process. The stiffness modeling method and stiffness isotropy index proposed in the paper are universal and can be applied to other parallel robots.

References

1.
Li
,
Y. G.
,
Liu
,
H. T.
,
Zhao
,
X. M.
,
Huang
,
T.
, and
Chetwynd
,
D. G.
,
2010
, “
Design of a 3-DOF PKM Module for Large Structural Component Machining
,”
Mech. Mach. Theory
,
45
(
6
), pp.
941
954
.
2.
Uriarte
,
L.
,
Zatarain
,
M.
,
Axinte
,
D.
,
Yagüe-Fabra
,
J.
,
Ihlenfeldt
,
S.
,
Eguia
,
J.
, and
Olarra
,
A.
,
2013
, “
Machine Tools for Large Parts
,”
CIRP Ann.
,
62
(
2
), pp.
731
750
.
3.
Tunc
,
L. T.
, and
Shaw
,
J.
,
2016
, “
Experimental Study on Investigation of Dynamics of Hexapod Robot for Mobile Machining
,”
Int. J. Adv. Manuf. Technol.
,
84
(
5–8
), pp.
817
830
.
4.
Xie
,
Z. H.
,
Xie
,
F. G.
,
Liu
,
X. J.
,
Wang
,
J. S.
, and
Mei
,
B.
,
2021
, “
Tracking Error Prediction Informed Motion Control of a Parallel Machine Tool for High-Performance Machining
,”
Int. J. Mach. Tools Manuf.
,
164
, p.
103714
.
5.
Paijens
,
A. F.
,
Huang
,
L.
, and
Al-Jumaily
,
A.
,
2017
, “
Mobile Robot Positioning System for Precision Manufacturing: The Laser Lighthouse Revisited
,”
2017 IEEE International Conference on Control, Automation and Robotics (ICCAR)
,
Nagoya, Japan
,
Feb. 22–24
, pp.
91
94
.
6.
Chong
,
Z. H.
,
Xie
,
F. G.
,
Liu
,
X. J.
,
Wang
,
J. S.
, and
Niu
,
H.
,
2020
, “
Design of the Parallel Mechanism for a Hybrid Mobile Robot in Wind Turbine Blades Polishing
,”
Rob. Comput. Integr. Manuf.
,
61
, p.
101857
.
7.
Tao
,
B.
,
Zhao
,
X. W.
, and
Ding
,
H.
,
2019
, “
Mobile-Robotic Machining for Large Complex Components: A Review Study
,”
Sci. China Technol. Sci.
,
62
(
8
), pp.
1388
1400
.
8.
Song
,
T.
,
Xi
,
F. F.
,
Guo
,
S.
, and
Lin
,
Y.
,
2016
, “
Optimization of a Mobile Platform for a Wheeled Manipulator
,”
ASME J. Mech. Rob.
,
8
(
6
), p.
061007
.
9.
White
,
T. S.
,
Alexander
,
R.
,
Callow
,
G.
,
Cooke
,
A.
,
Harris
,
S.
, and
Sargent
,
J.
,
2005
, “
A Mobile Climbing Robot for High Precision Manufacture and Inspection of Aerostructures
,”
Int. J. Rob. Res.
,
24
(
7
), pp.
589
598
.
10.
Olarra
,
A.
,
Axinte
,
D.
,
Uriarte
,
L.
, and
Bueno
,
R.
,
2017
, “
Machining With the WalkingHex: A Walking Parallel Kinematic Machine Tool for In Situ Operations
,”
CIRP Ann.
,
66
(
1
), p.
1608
.
11.
Ye
,
W.
,
He
,
L. Y.
, and
Li
,
Q. C.
,
2017
, “
A New Family of Symmetrical 2T2R Parallel Mechanisms Without Parasitic Motion
,”
ASME J. Mech. Rob.
,
10
(
1
), p.
011006
.
12.
Dasgupta
,
B.
, and
Mruthyunjaya
,
T. S.
,
2000
, “
The Stewart Platform Manipulator: A Review
,”
Mech. Mach. Theory
,
35
(
1
), pp.
15
40
.
13.
Stewart
,
D.
,
1965
, “
A Platform With Six Degrees of Freedom
,”
Proc. Inst. Mech. Eng.
,
180
(
1
), pp.
371
386
.
14.
Joshi
,
S.
, and
Tsai
,
L. W.
,
2003
, “
A Comparison Study of Two 3-DOF Parallel Manipulators: One With Three and the Other With Four Supporting Legs
,”
IEEE Trans. Rob. Autom.
,
19
(
2
), pp.
200
209
.
15.
Pierrot
,
F.
,
Reynaud
,
C.
, and
Fournier
,
A.
,
1990
, “
DELTA: A Simple and Efficient Parallel Robot
,”
Robotica
,
8
(
2
), pp.
105
109
.
16.
Siciliano
,
B.
,
1999
, “
The Tricept Robot: Inverse Kinematics, Manipula-Bility Analysis and Closed-Loop Direct Kinematics Algorithm
,”
Robotica
,
17
(
4
), pp.
437
445
.
17.
Wahl
,
J.
,
2002
,
U.S. Patent No. 6,431,802, U.S. Patent and Trademark Office, Washington, DC
.
18.
Li
,
Q. C.
, and
Hervé
,
J. M.
,
2010
, “
1T2R Parallel Mechanisms Without Parasitic Motion
,”
IEEE Trans. Rob.
,
26
(
3
), pp.
401
410
.
19.
Chen
,
Q. H.
,
Chen
,
Z.
,
Chai
,
X. X.
, and
Li
,
Q.
,
2013
, “
Kinematic Analysis of a 3-Axis Parallel Manipulator: The P3
,”
Adv. Mech. Eng.
,
5
, p.
589156
.
20.
Xie
,
F. G.
,
Liu
,
X. J.
,
Wang
,
J. S.
, and
Wabner
,
M.
,
2017
, “
Kinematic Optimization of a Five Degrees-of-Freedom Spatial Parallel Mechanism With Large Orientational Workspace
,”
ASME J. Mech. Rob.
,
9
(
5
), p.
051005
.
21.
Xie
,
F. G.
,
Liu
,
X. J.
,
Luo
,
X.
, and
Wabner
,
M.
,
2016
, “
Mobility, Singularity, and Kinematics Analyses of a Novel Spatial Parallel Mechanism
,”
ASME J. Mech. Rob.
,
8
(
6
), p.
061022
.
22.
Chen
,
J. K.
,
Xie
,
F. G.
,
Liu
,
X. J.
, and
Bi
,
W. Y.
,
2020
, “
Conceptual Design and Kinematic Analysis of an Adsorption Machining Robot for Processing of Large-Scale Structural Parts
,”
International Workshop on Fundamental Issues, Applications and Future Research Directions for Parallel Mechanisms/Manipulators/Machines (Parallel 2020)
, Paper 13.
23.
Liu
,
H. T.
,
Huang
,
T.
,
Chetwynd
,
D. G.
, and
Kecskemethy
,
A.
,
2017
, “
Stiffness Modeling of Parallel Mechanisms at Limb and Joint/Link Levels
,”
IEEE Trans. Rob.
,
33
(
3
), pp.
734
741
.
24.
Li
,
Y.
, and
Xu
,
Q.
,
2008
, “
Stiffness Analysis for a 3-PUU Parallel Kinematic Machine
,”
Mech. Mach. Theory
,
43
(
2
), pp.
186
200
.
25.
Zhang
,
D.
, and
Gosselin
,
C. M.
,
2002
, “
Kinetostatic Modeling of Parallel Mechanisms With a Passive Constraining Leg and Revolute Actuators
,”
Mech. Mach. Theory
,
37
(
6
), pp.
599
617
.
26.
Wang
,
Y. Y.
,
Liu
,
H. T.
,
Huang
,
T.
, and
Chetwynd
,
D. G.
,
2009
, “
Stiffness Modeling of the Tricept Robot Using the Overall Jacobian Matrix
,”
ASME J. Mech. Rob.
,
1
(
2
), pp.
795
810
.
27.
Guo
,
Y. J.
,
Dong
,
H. Y.
, and
Ke
,
Y. L.
,
2015
, “
Stiffness-Oriented Posture Optimization in Robotic Machining Applications
,”
Rob. Comput. Integr. Manuf.
,
35
, pp.
69
76
.
28.
Görgülü
,
I.
, and
Dede
,
M. I. C.
,
2019
, “
A New Stiffness Performance Index: Volumetric Isotropy Index
,”
Machines
,
7
(
2
), p.
44
.
29.
Bonev
,
I. A.
,
2002
, “
Geometric Analysis of Parallel Mechanisms
,”
Ph.D. thesis
,
Université Laval
,
Quebec City
.
30.
Gosselin
,
C.
, and
Schreiber
,
L. T.
,
2018
, “
Redundancy in Parallel Mechanisms: A Review
,”
ASME Appl. Mech. Rev.
,
70
(
1
), p.
010802
.
31.
Xu
,
L. M.
,
Chai
,
X. X.
,
Li
,
Q. C.
,
Zhang
,
L. A.
, and
Ye
,
W.
,
2019
, “
Design and Experimental Investigation of a New 2R1T Overconstrained Parallel Kinematic Machine With Actuation Redundancy
,”
ASME J. Mech. Rob.
,
11
(
3
), p.
1
.
32.
Zhao
,
Y. J.
, and
Gao
,
F.
,
2009
, “
Dynamic Performance Comparison of the 8PSS Redundant Parallel Manipulator and Its Non-Redundant Counterpart—The 6PSS Parallel Manipulator
,”
Mech. Mach. Theory
,
44
(
5
), pp.
991
1008
.
33.
Cheng
,
H.
,
Yiu
,
Y. K.
, and
Li
,
Z.
,
2003
, “
Dynamics and Control of Redundantly Actuated Parallel Manipulators
,”
IEEE/ASME Trans. Mechatron.
,
8
(
4
), pp.
483
491
.
34.
Nayak
,
A.
,
Caro
,
S.
, and
Wenger
,
P.
,
2018
, “
Comparison of 3-[PP]S Parallel Manipulators Based on Their Singularity Free Orientation Workspace, Parasitic Motions and Complexity
,”
Mech. Mach. Theory
,
129
, pp.
293
315
.
35.
Zargarbashi
,
S. H. H.
,
Khan
,
W.
, and
Angeles
,
J.
,
2012
, “
Posture Optimization in Robot-Assisted Machining Operations
,”
Mech. Mach. Theory
,
51
, pp.
74
86
.
You do not currently have access to this content.