Abstract

This paper presents the static balancing design of a special reconfigurable linkage that can switch between two one-degree-of-freedom (DoF) working configurations. We will show that the studied dual-mode linkage only requires one mechanical spring or one counterweight for completely balancing its gravitational effect in theory at both modes. First, the theoretical models of the spring-based and the counterweight-based designs are derived. The proposed design concepts were then demonstrated by a numerical example and validated by software simulation. Experimental tests on both designs were also performed. The result of this study shows that a reconfigurable mechanism with N working configurations can be completely statically balanced by using less than N passive energy elements.

References

1.
Kuo
,
C.-H.
,
Dai
,
J. S.
, and
Yan
,
H.-S.
,
2009
, “
Reconfiguration Principles and Strategies for Reconfigurable Mechanisms
,”
ASME/IFToMM International Conference on Reconfigurable Mechanisms and Robots
,
London, UK
,
June 22–24
, pp.
1
7
.
2.
Dai
,
J. S.
,
Huang
,
Z.
, and
Lipkin
,
H.
,
2006
, “
Mobility of Overconstrained Parallel Mechanisms
,”
ASME J. Mech. Des.
,
128
(
1
), pp.
220
229
.
3.
Dai
,
J. S.
, and
Rees Jones
,
J.
,
1999
, “
Mobility in Metamorphic Mechanisms of Foldable/Erectable Kinds
,”
ASME J. Mech. Des.
,
121
(
3
), pp.
375
382
.
4.
Kong
,
X.
,
2014
, “
Reconfiguration Analysis of a 3-DOF Parallel Mechanism Using Euler Parameter Quaternions and Algebraic Geometry Method
,”
Mech. Mach. Theory
,
74
, pp.
188
201
.
5.
Yan
,
H.-S.
, and
Kuo
,
C.-H.
,
2006
, “
Representations and Identifications of Structural and Motion State Characteristics of Mechanisms With Variable Topologies
,”
Trans. Can. Soc. Mech. Eng.
,
30
(
1
), pp.
19
40
.
6.
Nurahmi
,
L.
,
Caro
,
S.
, and
Solichin
,
M.
,
2019
, “
A Novel Ankle Rehabilitation Device Based on a Reconfigurable 3-RPS Parallel Manipulator
,”
Mech. Mach. Theory
,
134
, pp.
135
150
.
7.
Sun
,
J.
, and
Zhao
,
J.
,
2019
, “
An Adaptive Walking Robot With Reconfigurable Mechanisms Using Shape Morphing Joints
,”
IEEE Robot. Autom. Lett.
,
4
(
2
), pp.
724
731
.
8.
Wei
,
G.
,
Dai
,
J. S.
,
Wang
,
S.
, and
Luo
,
H.
,
2011
, “
Kinematic Analysis and Prototype of a Metamorphic Anthropomorphic Hand With a Reconfigurable Palm
,”
Int. J. Humanoid Rob.
,
8
(
3
), pp.
459
479
.
9.
Gao
,
C.
,
Huang
,
H.
,
Li
,
B.
, and
Jia
,
G.
,
2019
, “
Design of a Truss-Shaped Deployable Grasping Mechanism Using Mobility Bifurcation
,”
Mech. Mach. Theory
,
139
, pp.
346
358
.
10.
Kuo
,
C.-H.
, and
Su
,
J.-W.
,
2017
, “
Configuration Analysis of a Class of Reconfigurable Cube Mechanisms: Mobility and Configuration Isomorphism
,”
Mech. Mach. Theory
,
107
, pp.
369
383
.
11.
Kuo
,
C.-H.
, and
Chang
,
L.-Y.
,
2014
, “
Structure Decomposition and Homomorphism Identification of Planar Variable Topology Mechanisms
,”
ASME J. Mech. Rob.
,
6
(
2
), p.
021002
.
12.
Gan
,
D.
,
Dai
,
J. S.
, and
Liao
,
Q.
,
2009
, “
Mobility Change in Two Types of Metamorphic Parallel Mechanisms
,”
ASME J. Mech. Rob.
,
1
(
4
), p.
041007
.
13.
Winder
,
B. G.
,
Magleby
,
S. P.
, and
Howell
,
L. L.
,
2009
, “
Kinematic Representations of Pop-Up Paper Mechanisms
,”
ASME J. Mech. Rob.
,
1
(
2
), p.
021009
.
14.
Wohlhart
,
K.
,
1996
, “Kinematotropic Linkages,”
Recent Advances in Robot Kinematics
,
J.
Lenarčič
, and
V.
Parenti-Castelli
, eds.,
Kluwer Academic Publishers
,
Dordrecht, Netherlands
, pp.
359
368
.
15.
Zhang
,
L.
,
Wang
,
D.
, and
Dai
,
J. S.
,
2008
, “
Biological Modeling and Evolution Based Synthesis of Metamorphic Mechanisms
,”
ASME J. Mech. Des.
,
130
(
7
), p.
072303
.
16.
Zhang
,
K.
,
Dai
,
J. S.
, and
Fang
,
Y.
,
2010
, “
Topology and Constraint Analysis of Phase Change in the Metamorphic Chain and Its Evolved Mechanism
,”
ASME J. Mech. Des.
,
132
(
12
), p.
121001
.
17.
Kuo
,
C.-H.
, and
Yan
,
H.-S.
,
2007
, “
On the Mobility and Configuration Singularity of Mechanisms With Variable Topologies
,”
ASME J. Mech. Des.
,
129
(
6
), pp.
617
624
.
18.
Yan
,
H.-S.
, and
Kuo
,
C.-H.
,
2006
, “
Topological Representations and Characteristics of Variable Kinematic Joints
,”
ASME J. Mech. Des.
,
128
(
2
), pp.
384
391
.
19.
Arakelian
,
V.
,
2016
, “
Gravity Compensation in Robotics
,”
Adv. Rob.
,
30
(
2
), pp.
79
96
.
20.
Carricato
,
M.
, and
Gosselin
,
C.
,
2009
, “
A Statically Balanced Gough/Stewart-Type Platform: Conception, Design, and Simulation
,”
ASME J. Mech. Rob.
,
1
(
3
), p.
031005
.
21.
Herder
,
J. L.
,
2001
, “
Energy-Free Systems: Theory, Conception and Design of Statically Balanced Spring Mechanisms
,”
Ph.D. thesis
,
Department of Design, Engineering and Production, Delft University of Technology
,
Delft, The Netherlands
.
22.
Van der Wijk
,
V.
, and
Herder
,
J. L.
,
2009
, “Dynamic Balancing of Clavel’s Delta Robot,”
Computational Kinematics
,
A.
Kecskeméthy
, and
A.
Müller
, eds.,
Springer
,
Berlin, Heidelberg
, pp.
315
322
.
23.
Baradat
,
C.
,
Arakelian
,
V.
,
Briot
,
S.
, and
Guegan
,
S.
,
2008
, “
Design and Prototyping of a New Balancing Mechanism for Spatial Parallel Manipulators
,”
ASME J. Mech. Des.
,
130
(
7
), p.
072305
.
24.
Gosselin
,
C. M.
, and
Wang
,
J.
,
1998
, “
On the Design of Gravity-Compensated Six-Degree-of-Freedom Parallel Mechanisms
,”
IEEE International Conference on Robotics and Automation (ICRA)
,
Leuven, Belgium
,
May 20
, pp.
2287
2294
.
25.
Van der Wijk
,
V.
,
2017
, “
Design and Analysis of Closed-Chain Principal Vector Linkages for Dynamic Balance With a New Method for Mass Equivalent Modeling
,”
Mech. Mach. Theory
,
107
, pp.
283
304
.
26.
Kuo
,
C.-H.
, and
Lai
,
S.-J.
,
2016
, “
Design of a Novel Statically Balanced Mechanism for Laparoscope Holders With Decoupled Positioning and Orientating Manipulation
,”
ASME J. Mech. Rob.
,
8
(
1
), p.
015001
.
27.
Hsiu
,
W.-H.
,
Syu
,
F.-C.
, and
Kuo
,
C.-H.
,
2015
, “
Design and Implementation of a New Statically Balanced Mechanism for Slider-Type Desktop Monitor Stands
,”
Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci.
,
229
(
9
), pp.
1671
1685
.
28.
Martini
,
A.
,
2018
, “
Gravity Compensation of a 6-UPS Parallel Kinematics Machine Tool Through Elastically Balanced Constant-Force Generators
,”
FME Trans.
,
46
(
1
), pp.
10
16
.
29.
Martini
,
A.
,
Troncossi
,
M.
,
Carricato
,
M.
, and
Rivola
,
A.
,
2015
, “
Static Balancing of a Parallel Kinematics Machine With Linear-Delta Architecture: Theory, Design and Numerical Investigation
,”
Mech. Mach. Theory
,
90
, pp.
128
141
.
30.
Arakelian
,
V.
, and
Briot
,
S.
,
2015
,
Balancing of Linkages and Robot Manipulators: Advanced Methods With Illustrative Examples
,
Springer International Publishing
,
Switzerland
.
31.
Gosselin
,
C.
,
2008
, “Gravity Compensation, Static Balancing and Dynamic Balancing of Parallel Mechanisms,”
Smart Devices and Machines for Advanced Manufacturing
,
L.
Wang
, and
J.
Xi
, eds.,
Springer-Verlag London Limited
,
London
, pp.
27
48
.
32.
Alamdari
,
A.
,
Haghighi
,
R.
, and
Krovi
,
V.
,
2019
, “
Gravity-Balancing of Elastic Articulated-Cable Leg-Orthosis Emulator
,”
Mech. Mach. Theory
,
131
, pp.
351
370
.
33.
Kim
,
C.-K.
,
Chung
,
D. G.
,
Hwang
,
M.
,
Cheon
,
B.
,
Kim
,
H.
,
Kim
,
J.
, and
Kwon
,
D.-S.
,
2019
, “
Three-degrees-of-freedom Passive Gravity Compensation Mechanism Applicable to Robotic Arm With Remote Center of Motion for Minimally Invasive Surgery
,”
IEEE Robot. Autom. Lett.
,
4
(
4
), pp.
3473
3480
.
34.
Zhou
,
L.
,
Chen
,
W.
,
Chen
,
W.
,
Bai
,
S.
,
Zhang
,
J.
, and
Wang
,
J.
,
2020
, “
Design of a Passive Lower Limb Exoskeleton for Walking Assistance With Gravity Compensation
,”
Mech. Mach. Theory
,
150
, p.
103840
.
35.
van der Wijk
,
V.
,
2020
, “
The Grand 4R Four-Bar Based Inherently Balanced Linkage Architecture for Synthesis of Shaking Force Balanced and Gravity Force Balanced Mechanisms
,”
Mech. Mach. Theory
,
150
, p.
103815
.
36.
Nguyen
,
V. L.
,
Lin
,
C.-Y.
, and
Kuo
,
C.-H.
,
2020
, “
Gravity Compensation Design of Planar Articulated Robotic Arms Using the Gear-Spring Modules
,”
ASME J. Mech. Rob.
,
12
(
3
), p.
031014
.
37.
Nguyen
,
V. L.
,
Lin
,
C.-Y.
, and
Kuo
,
C.-H.
,
2020
, “
Gravity Compensation Design of Delta Parallel Robots Using Gear-Spring Modules
,”
Mech. Mach. Theory
,
154
, p.
104046
.
38.
Wang
,
J.
, and
Kong
,
X.
,
2019
, “
A Geometric Approach to the Static Balancing of Mechanisms Constructed Using Spherical Kinematic Chain Units
,”
Mech. Mach. Theory
,
140
, pp.
305
320
.
39.
Robertson
,
P.
,
Kuo
,
C.-H.
, and
Herder
,
J.
,
2016
, “
A Compatibility Study of Static Balancing in Reconfigurable Mechanisms
,”
International Design Engineering Technical Conferences and Computers and Information in Engineering Conference (IDETC-CIE)
,
Charlotte, NC,
Aug. 21–24
, p.
DETC2016-59281
.
40.
Tseng
,
T.-Y.
,
Lin
,
Y.-J.
,
Hsu
,
W.-C.
,
Lin
,
L.-F.
, and
Kuo
,
C.-H.
,
2017
, “
A Novel Reconfigurable Gravity Balancer for Lower-Limb Rehabilitation With Switchable Hip/Knee-Only Exercise
,”
ASME J. Mech. Rob.
,
9
(
4
), p.
041002
.
41.
Fedorov
,
D.
, and
Birglen
,
L.
,
2018
, “
Differential Noncircular Pulleys for Cable Robots and Static Balancing
,”
ASME J. Mech. Rob.
,
10
(
6
), p.
061001
.
42.
Koser
,
K.
,
2009
, “
A cam Mechanism for Gravity-Balancing
,”
Mech. Res. Commun.
,
36
(
4
), pp.
523
530
.
43.
Hung
,
Y.-C.
, and
Kuo
,
C.-H.
,
2017
, “A Novel One-DoF Gravity Balancer Based on Cardan Gear Mechanism,”
New Trends in Mechanism and Machine Science
,
P.
Wenger
, and
P.
Flores
, eds.,
Springer Nature
,
Cham, Switzerland
, pp.
261
268
.
44.
Bijlsma
,
B. G.
,
Radaelli
,
G.
, and
Herder
,
J. L.
,
2017
, “
Design of a Compact Gravity Equilibrator With an Unlimited Range of Motion
,”
ASME J. Mech. Rob.
,
9
(
6
), p.
061003
.
45.
Arakelian
,
V.
, and
Zhang
,
Y.
,
2019
, “
An Improved Design of Gravity Compensators Based on the Inverted Slider-Crank Mechanism
,”
ASME J. Mech. Rob.
,
11
(
3
), p.
034501
.
46.
Wang
,
J.
, and
Gosselin
,
C. M.
,
1999
, “
Static Balancing of Spatial Three-Degree-of-Freedom Parallel Mechanisms
,”
Mech. Mach. Theory
,
34
(
3
), pp.
437
452
.
47.
Simionescu
,
I.
,
Ciupitu
,
L.
, and
Ionita
,
L. C.
,
2015
, “
Static Balancing With Elastic Systems of DELTA Parallel Robots
,”
Mech. Mach. Theory
,
87
, pp.
150
162
.
48.
Robertson
,
P. D.
,
Herder
,
J. L.
, and
Kuo
,
C.-H.
,
2018
, “
The Static Balancing of Single-Loop Reconfigurable Mechanisms
,”
IEEE International Conference on Reconfigurable Mechanisms and Robots (ReMAR)
,
Delft, Netherlands
,
June 20–22
, pp.
1
11
.
49.
Kuo
,
C.-H.
,
Nguyen-Vu
,
L.
, and
Chou
,
L.-T.
,
2018
, “
Static Balancing of a Reconfigurable Linkage With Switchable Mobility by Using a Single Counterweight
,”
IEEE International Conference on Reconfigurable Mechanisms and Robots (ReMAR)
,
Delft, Netherlands
,
June 20–22
, pp.
1
6
.
50.
Kuo
,
C. H.
,
Dai
,
J. S.
, and
Dasgupta
,
P.
,
2012
, “
Kinematic Design Considerations for Minimally Invasive Surgical Robots: An Overview
,”
Int. J. Med. Rob. Comput. Assisted Surg.
,
8
(
2
), pp.
127
145
.
You do not currently have access to this content.