Abstract

In this paper, the feasibility of applying transfer learning for modeling robot manipulators is examined. A neural network-based transfer learning approach of inverse displacement analysis of robot manipulators is studied. Neural networks with different structures are applied utilizing data from different configurations of a manipulator for training purposes. Then, the transfer learning was conducted between manipulators with different geometric layouts. The training is performed on both the neural networks with pretrained initial parameters and the neural networks with random initialization. To investigate the rate of convergence of data fitting comprehensively, different values of performance targets are defined. The computing epochs and performance measures are compared. It is presented that, depending on the structure of the neural network, the proposed transfer learning can accelerate the training process and achieve higher accuracy. For different datasets, the transfer learning approach improves their performance differently.

References

1.
Goh
,
A. T.
,
1995
, “
Back-Propagation Neural Networks for Modeling Complex Systems
,”
Artif. Intell. Eng.
,
9
(
3
), pp.
143
151
.
2.
Specht
,
D. F.
,
1991
, “
A General Regression Neural Network
,”
IEEE Trans. Neural Networks
,
2
(
6
), pp.
568
576
.
3.
Li
,
J.
,
Cheng
,
J.-h.
,
Shi
,
J.-y.
, and
Huang
,
F.
,
2012
, “Brief Introduction of Back Propagation (BP) Neural Network Algorithm and its Improvement,”
Advances in Computer Science and Information Engineering
,
D.
Jin
, and
S.
Lin
, eds.,
Springer
,
New York
, pp.
553
558
.
4.
Duka
,
A.-V.
,
2014
, “
Neural Network Based Inverse Kinematics Solution for Trajectory Tracking of a Robotic arm
,”
Procedia Technol.
,
12
(
1
), pp.
20
27
.
5.
Köker
,
R.
,
Öz
,
C.
,
Çakar
,
T.
, and
Ekiz
,
H.
,
2004
, “
A Study of Neural Network Based Inverse Kinematics Solution for a Three-Joint Robot
,”
Rob. Auton. Syst.
,
49
(
3–4
), pp.
227
234
.
6.
Karlik
,
B.
, and
Aydin
,
S.
,
2000
, “
An Improved Approach to the Solution of Inverse Kinematics Problems for Robot Manipulators
,”
Eng. Appl. Artif. Intell.
,
13
(
2
), pp.
159
164
.
7.
Jha
,
P.
, and
Biswal
,
B.
,
2014
, “
A Neural Network Approach for Inverse Kinematic of a SCARA Manipulator
,”
IAES Int. J. Rob. Autom.
,
3
(
1
), p.
52
.
8.
Yang
,
Y.
,
Peng
,
G.
,
Wang
,
Y.
, and
Zhang
,
H.
,
2007
, “
A New Solution for Inverse Kinematics of 7-DOF Manipulator Based on Neural Network
,”
Proceedings of 2007 IEEE International Conference on Automation and Logistics
,
Jinan, Shandong, China
,
Aug. 18–21
,
IEEE
, pp.
1958
1962
. https://www.aconf.org/conf_1933
9.
KöKer
,
R.
,
2013
, “
A Genetic Algorithm Approach to a Neural-Network-Based Inverse Kinematics Solution of Robotic Manipulators Based on Error Minimization
,”
Inf. Sci.
,
222
, pp.
528
543
.
10.
Hasan
,
A. T.
,
Hamouda
,
A. M. S.
,
Ismail
,
N.
, and
Al-Assadi
,
H.
,
2006
, “
An Adaptive-Learning Algorithm to Solve the Inverse Kinematics Problem of a 6 DOF Serial Robot Manipulator
,”
Adv. Eng. Software
,
37
(
7
), pp.
432
438
.
11.
Barrett
,
S.
,
Taylor
,
M. E.
, and
Stone
,
P.
,
2010
, “
Transfer Learning for Reinforcement Learning on a Physical Robot
,”
Proceedings of Ninth International Conference on Autonomous Agents and Multiagent Systems-Adaptive Learning Agents Workshop (AAMAS-ALA).
,
Toronto, Ontario, Canada
,
May 10–14
, pp.
24
29
. http://www.ifaamas.org/Proceedings/aamas2010/
12.
Malone
,
N.
,
Faust
,
A.
,
Rohrer
,
B.
,
Lumia
,
R.
,
Wood
,
J.
, and
Tapia
,
L.
,
2014
, “
Efficient Motion-Based Task Learning for a Serial Link Manipulator
,”
Trans. Control Mech. Syst.
,
3
(
1
), pp.
25
35
.
13.
Bocsi
,
B.
,
Csató
,
L.
, and
Peters
,
J.
,
2013
, “
Alignment-Based Transfer Learning for Robot Models
,”
Proceedings of the 2013 International Joint Conference on Neural Networks (IJCNN)
,
Dallas, TX
,
Aug. 4–9
,
IEEE
, pp.
1
7
. http://www.proceedings.com/20697.html
14.
Cireşan
,
D. C.
,
Meier
,
U.
, and
Schmidhuber
,
J.
,
2010
, “
Transfer Learning for Latin and Chinese Characters with Deep Neural Networks
,”
Proceedings of the 2012 International Joint Conference on Neural Networks (IJCNN)
,
Brisbane, Queensland, Australia
,
June 10
,
IEEE
, pp.
1
6
. http://www.proceedings.com/15476.html
15.
Mo
,
W.
,
Huang
,
Y.-K.
,
Zhang
,
S.
,
Ip
,
E.
,
Kilper
,
D. C.
,
Aono
,
Y.
, and
Tajima
,
T.
,
2018
, “
ANN-Based Transfer Learning for QoT Prediction in Real-Time Mixed Line-Rate Systems
,”
Proceedings of the 2018 Optical Fiber Communications Conference and Exposition (OFC)
,
San Diego, CA
,
Mar. 11–15
,
IEEE
, pp.
1
3
. http://www.proceedings.com/39505.html
16.
Ng
,
H.-W.
,
Nguyen
,
V. D.
,
Vonikakis
,
V.
, and
Winkler
,
S.
,
2015
, “
Deep Learning for Emotion Recognition on Small Datasets Using Transfer Learning
,”
Proceedings of the 2015 ACM on International Conference on Multimodal Interaction
,
Seattle, WA
,
Nov. 9–13
, pp.
443
449
. http://icmi.acm.org/2015/index.php?id=home
17.
Devin
,
C.
,
Gupta
,
A.
,
Darrell
,
T.
,
Abbeel
,
P.
, and
Levine
,
S.
,
2017
, “
Learning Modular Neural Network Policies for Multi-task and Multi-Robot Transfer
,”
Proceedings of the 2017 IEEE International Conference on Robotics and Automation (ICRA)
,
Singapore
,
May 29–June 3
,
IEEE
, pp.
2169
2176
. https://www.ieee-ras.org/component/rseventspro/event/569-icra-2017-ieee-international-conference-on-robotics-and-automation
18.
Mišeikis
,
J.
,
Brijacak
,
I.
,
Yahyanejad
,
S.
,
Glette
,
K.
,
Elle
,
O. J.
, and
Torresen
,
J.
,
2018
, “
Transfer Learning for Unseen Robot Detection and Joint Estimation on a Multi-objective Convolutional Neural Network
,”
Proceedings of the 2018 IEEE International Conference on Intelligence and Safety for Robotics (ISR)
,
Shenyang, Liaoning, China
,
Aug. 24–27
,
IEEE
, pp.
337
342
. https://www.ieee-ras.org/component/rseventspro/event/1238-isr-2018-ieee-international-conference-on-intelligence-and-safety-for-robotics
19.
Caldera
,
S.
,
Rassau
,
A.
, and
Chai
,
D.
,
2018
, “
Review of Deep Learning Methods in Robotic Grasp Detection
,”
Multimodal Technol. Interact.
,
2
(
3
), p.
57
.
20.
Seita
,
D.
,
Jamali
,
N.
,
Laskey
,
M.
,
Tanwani
,
A. K.
,
Berenstein
,
R.
,
Baskaran
,
P.
,
Iba
,
S.
,
Canny
,
J.
, and
Goldberg
,
K.
,
2018
, “
Deep Transfer Learning of Pick Points on Fabric for Robot Bed-Making
,”
arXiv preprint arXiv:1809.09810
.
21.
Liu
,
L.
,
Yan
,
R.-J.
,
Maruvanchery
,
V.
,
Kayacan
,
E.
,
Chen
,
I.-M.
, and
Tiong
,
L. K.
,
2017
, “
Transfer Learning on Convolutional Activation Feature as Applied to a Building Quality Assessment Robot
,”
Int. J. Adv. Rob. Syst.
,
14
(
3
), p.
1729881417712620
.
22.
Chourasia
,
G.
,
Shrivastava
,
A.
,
Jaipuriyar
,
P.
,
kumar Bhatt
,
Z. S.
,
Khan
,
A. S.
, and
Das
,
A.
,
2019
, “
7-DOF Robotic Manipulator for Autonomous Segregation Using Transfer Learning
,”
Proceedings of the 2019 6th International Conference on Computing for Sustainable Global Development (INDIACom)
,
New Delhi, India
,
Mar. 13–15
,
IEEE
, pp.
698
701
. http://www.proceedings.com/52656.html
23.
Popov
,
D.
, and
Klimchik
,
A.
,
2020
, “
Transfer Learning for Collision Localization in Collaborative Robotics
,”
Proceedings of the 3rd International Conference on Applications of Intelligent Systems
,
Las Palmas de Gran Canaria, Spain
,
Jan. 7–12
, pp.
1
7
. http://appis.webhosting.rug.nl/2020/
24.
Tang
,
H.
,
2021
, “
Artificial Neural Network Based Transfer Learning for Robot Kinematic Modelling
,”
Master of Applied Science thesis
,
Queen's University at Kingston
,
Kingston, ON
.
You do not currently have access to this content.