Abstract

In this article, we present a continuously tunable stiffness arm for safe physical human–robot interactions. Compliant joints and compliant links are two typical solutions to address safety issues for physical human–robot interactions via introducing mechanical compliance to robotic systems. While extensive studies explore variable stiffness joints/actuators, variable stiffness links for safe physical human–robot interactions are much less studied. This article details the design and modeling of a compliant robotic arm whose stiffness can be continuously tuned via cable-driven mechanisms actuated by a single servo motor. Specifically, a 3D-printed compliant robotic arm is prototyped and tested by static experiments, and an analytical model of the variable stiffness arm is derived and validated by testing. The results show that the lateral stiffness of the robot arm can achieve a variety of 221.26% given a morphing angle of 90 deg. The variable stiffness arm design developed in this study could be a promising approach to address safety concerns for safe physical human–robot interactions.

References

References
1.
Mutlu
,
B.
, and
Forlizzi
,
J.
,
2008
, “
Robots in Organizations: The Role of Workflow, Social, and Environmental Factors in Human-Robot Interaction
,”
Human-Robot Interaction (HRI), 2008 3rd ACM/IEEE International Conference on
,
Amsterdam, The Netherlands
,
Mar. 12–15
,
IEEE
, pp.
287
294
.
2.
Wolf
,
S.
, and
Hirzinger
,
G.
,
2008
, “
A New Variable Stiffness Design: Matching Requirements of the Next Robot Generation
,”
IEEE International Conference on Robotics and Automation
,
Pasadena, CA
,
May 19–23
, pp.
1741
1746
.
3.
Wolf
,
S.
,
Eiberger
,
O.
, and
Hirzinger
,
G.
,
2011
, “
The DLR FSJ: Energy Based Design of a Variable Stiffness Joint
,”
2011 IEEE International Conference on Robotics and Automation (ICRA)
,
Shanghai, China
,
May 9–13
, pp.
5082
5089
.
4.
Friedl
,
W.
,
Höppner
,
H.
,
Petit
,
F.
, and
Hirzinger
,
G.
,
2011
, “
Wrist and Forearm Rotation of the DLR Hand Arm System: Mechanical Design, Shape Analysis and Experimental Validation
,”
2011 IEEE/RSJ International Conference on Intelligent Robots and Systems
,
San Francisco, CA
,
Sept. 25–30
, pp.
1836
1842
.
5.
Ménard
,
T.
,
Grioli
,
G.
, and
Bicchi
,
A.
,
2014
, “
A Stiffness Estimator for Agonistic–Antagonistic Variable-Stiffness-Actuator Devices
,”
IEEE Trans. Robot.
,
30
(
5
), pp.
1269
1278
. 10.1109/TRO.2014.2329998
6.
Garabini
,
M.
,
Passaglia
,
A.
,
Belo
,
F.
,
Salaris
,
P.
, and
Bicchi
,
A.
,
2011
, “
Optimality Principles in Variable Stiffness Control: The VSA Hammer
,”
2011 IEEE/RSJ International Conference on Intelligent Robots and Systems
,
San Francisco, CA
,
Sept. 25–30
, pp.
3770
3775
.
7.
Schiavi
,
R.
,
Grioli
,
G.
,
Sen
,
S.
, and
Bicchi
,
A.
,
2008
, “
VSA-II: A Novel Prototype of Variable Stiffness Actuator for Safe and Performing Robots Interacting With Humans
,”
IEEE International Conference on Robotics and Automation
,
Pasadena, CA
,
May 19–23
, pp.
2171
2176
.
8.
Tonietti
,
G.
,
Schiavi
,
R.
, and
Bicchi
,
A.
,
2005
, “
Design and Control of a Variable Stiffness Actuator for Safe and Fast Physical Human/Robot Interaction
,”
Proceedings of the 2005 IEEE International Conference on Robotics and Automation
,
Barcelona, Spain
,
Apr. 18–22
, pp.
526
531
.
9.
Zinn
,
M.
,
Khatib
,
O.
,
Roth
,
B.
, and
Salisbury
,
J. K.
,
2004
, “
Playing It Safe [Human-Friendly Robots]
,”
IEEE Robot. Automat. Mag
,
11
(
2
), pp.
12
21
. 10.1109/MRA.2004.1310938
10.
Migliore
,
S. A.
,
Brown
,
E. A.
, and
DeWeerth
,
S. P.
,
2005
, “
Biologically Inspired Joint Stiffness Control
,”
Proceedings of the 2005 IEEE International Conference on Robotics and Automation
,
Barcelona, Spain
,
Apr. 18–22
, pp.
4508
4513
.
11.
Koganezawa
,
K.
,
2005
, “
Mechanical Stiffness Control for Antagonistically Driven Joints
,”
2005 IEEE/RSJ International Conference on Intelligent Robots and Systems
,
Edmonton, AB, Canada
,
Aug. 2–6
, pp.
1544
1551
.
12.
Pratt
,
G. A.
, and
Williamson
,
M. M.
,
1995
, “
Series Elastic Actuators
,”
1995 IEEE/RSJ International Conference on Intelligent Robots and Systems 95, Proceedings on ‘Human Robot Interaction and Cooperative Robots’
,
Pittsburgh, PA
,
Aug. 5–9
, pp.
399
406
.
13.
She
,
Y.
,
Meng
,
D.
,
Cui
,
J.
, and
Su
,
H.-J.
,
2017
, “
On the Impact Force of Human-Robot Interaction: Joint Compliance Vs. Link Compliance
,”
2017 IEEE International Conference on Robotics and Automation (ICRA)
,
Singapore
,
May 29–June 3
, pp.
6718
6723
.
14.
She
,
Y.
,
Song
,
S.
,
Su
,
H.-J.
, and
Wang
,
J.
,
2020
, “
A Comparative Study on the Effect of Mechanical Compliance for a Safe Physical Human–Robot Interaction
,”
ASME J. Mech. Des.
,
142
(
6
), p.
063305
. 10.1115/1.4046068
15.
Park
,
J.-J.
,
Kim
,
B.-S.
,
Song
,
J.-B.
, and
Kim
,
H.-S.
,
2008
, “
Safe Link Mechanism Based on Nonlinear Stiffness for Collision Safety
,”
Mech. Mach. Theory.
,
43
(
10
), pp.
1332
1348
. 10.1016/j.mechmachtheory.2007.10.004
16.
Zhang
,
M.
,
Laliberté
,
T.
, and
Gosselin
,
C.
,
2016
, “
Force Capabilities of Two-Degree-of-Freedom Serial Robots Equipped With Passive Isotropic Force Limiters
,”
ASME J. Mech. Rob.
,
8
(
5
), p.
051002
. 10.1115/1.4032120
17.
López-Martínez
,
J.
,
Blanco-Claraco
,
J. L.
,
García-Vallejo
,
D.
, and
Giménez-Fernández
,
A.
,
2015
, “
Design and Analysis of a Flexible Linkage for Robot Safe Operation in Collaborative Scenarios
,”
Mech. Mach. Theory.
,
92
, pp.
1
16
. 10.1016/j.mechmachtheory.2015.04.018
18.
She
,
Y.
,
Su
,
H.-J.
, and
Hurd
,
C. J.
,
2015
, “
Shape Optimization of 2d Compliant Links for Design of Inherently Safe Robots
,”
ASME 2015 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Boston, MA
,
Aug. 2–5
, p. V05BT08A004.
19.
She
,
Y.
,
Su
,
H.-J.
,
Meng
,
D.
,
Song
,
S.
, and
Wang
,
J.
,
2018
, “
Design and Modeling of a Compliant Link for Inherently Safe Corobots
,”
ASME J. Mech. Rob.
,
10
(
1
), p.
011001
. 10.1115/1.4038530
20.
Stilli
,
A.
,
Wurdemann
,
H. A.
, and
Althoefer
,
K.
,
2014
, “
Shrinkable, Stiffness-Controllable Soft Manipulator Based on a Bio-Inspired Antagonistic Actuation Principle
,”
2014 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2014)
,
Chicago, IL
,
Sept. 14–18
, pp.
2476
2481
.
21.
Stilli
,
A.
,
Wurdemann
,
H. A.
, and
Althoefer
,
K.
,
2017
, “
A Novel Concept for Safe, Stiffness-Controllable Robot Links
,”
Soft Robot.
,
4
(
1
), pp.
16
22
. 10.1089/soro.2016.0015
22.
Gandarias
,
J. M.
,
Wang
,
Y.
,
Stilli
,
A.
,
García-Cerezo
,
A. J.
,
Gómez-de Gabriel
,
J. M.
, and
Wurdemann
,
H. A.
,
2020
, “
Open-Loop Position Control in Collaborative, Modular Variable-Stiffness-Link (vsl) Robots
,”
IEEE Robot. Automat. Lett.
,
5
(
2
), pp.
1772
1779
. 10.1109/LRA.2020.2969943
23.
She
,
Y.
,
Su
,
H.-J.
,
Lai
,
C.
, and
Meng
,
D.
,
2016
, “
Design and Prototype of a Tunable Stiffness Arm for Safe Human-Robot Interaction
,”
ASME 2016 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Charlotte, NC
,
Aug. 21–24
, p.
V05BT07A063
.
24.
She
,
Y.
,
Su
,
H.-J.
,
Meng
,
D.
, and
Lai
,
C.
,
2019
, “
Design and Modeling of a Continuously Tunable Stiffness Arm for Safe Physical Human-Robot Interaction
,”
ASME J. Mech. Rob.
,
12
(
1
), p.
011006
. 10.1115/1.4044840
25.
She
,
Y.
,
2018
, “
Compliant Robotic Arms for Inherently Safe Physical Human-Robot Interaction
,”
Ph.D. thesis
,
The Ohio State University
,
Columbus, OH
.
26.
Zeng
,
X.
,
Hurd
,
C.
,
Su
,
H.-J.
,
Song
,
S.
, and
Wang
,
J.
,
2020
, “
A Parallel-Guided Compliant Mechanism With Variable Stiffness Based on Layer Jamming
,”
Mech. Mach. Theory.
,
148
, p.
103791
. 10.1016/j.mechmachtheory.2020.103791
27.
Gao
,
Y.
,
Huang
,
X.
,
Mann
,
I. S.
, and
Su
,
H.-J.
,
2020
, “
A Novel Variable Stiffness Compliant Robotic Gripper Based on Layer Jamming
,”
ASME J. Mech. Rob.
,
12
(
5
), p.
051013
. 10.1115/1.4047156
28.
Frecker
,
M.
,
Ananthasuresh
,
G.
,
Nishiwaki
,
S.
,
Kikuchi
,
N.
, and
Kota
,
S.
,
1997
, “
Topological Synthesis of Compliant Mechanisms Using Multi-Criteria Optimization
,”
ASME J. Mech. Des.
,
119
(
2
), pp.
238
245
. 10.1115/1.2826242
29.
Tolou
,
N.
, and
Herder
,
J.
,
2009
, “
A Seminalytical Approach to Large Deflections in Compliant Beams Under Point Load
,”
Math. Problems Eng.
,
2009
, pp.
1
13
. 10.1155/2009/910896
30.
Awtar
,
S.
,
Slocum
,
A. H.
, and
Sevincer
,
E.
,
2007
, “
Characteristics of Beam-Based Flexure Modules
,”
ASME J. Mech. Des.
,
129
(
6
), pp.
625
639
. 10.1115/1.2717231
31.
Hopkins
,
J. B.
, and
Culpepper
,
M. L.
,
2010
, “
Synthesis of Multi-Degree of Freedom, Parallel Flexure System Concepts Via Freedom and Constraint Topology (Fact)—Part I: Principles
,”
Precis. Eng.
,
34
(
2
), pp.
259
270
. 10.1016/j.precisioneng.2009.06.008
32.
Hopkins
,
J. B.
, and
Culpepper
,
M. L.
,
2010
, “
Synthesis of Multi-Degree of Freedom, Parallel Flexure System Concepts Via Freedom and Constraint Topology (Fact). Part II: Practice
,”
Precis. Eng.
,
34
(
2
), pp.
271
278
. 10.1016/j.precisioneng.2009.06.007
33.
Morrison
,
T.
, and
Su
,
H.-J.
,
2020
, “
Stiffness Modeling of a Variable Stiffness Compliant Link
,”
Mech. Mach. Theory.
,
153
, p.
104021
. 10.1016/j.mechmachtheory.2020.104021
34.
Howell
,
L. L.
, and
Midha
,
A.
,
1994
, “
A Method for the Design of Compliant Mechanisms With Small-Length Flexural Pivots
,”
ASME J. Mech. Des.
,
116
(
1
), pp.
280
290
. 10.1115/1.2919359
35.
Howell
,
L. L.
, and
Midha
,
A.
,
1995
, “
Parametric Deflection Approximations for End-Loaded, Large-Deflection Beams in Compliant Mechanisms
,”
ASME J. Mech. Des.
,
117
(
1
), pp.
156
165
. 10.1115/1.2826101
36.
Song
,
S.
,
She
,
Y.
,
Wang
,
J.
, and
Su
,
H.-J.
,
2020
, “
Toward Tradeoff Between Impact Force Reduction and Maximum Safe Speed: Dynamic Parameter Optimization of Variable Stiffness Robots
,”
ASME J. Mech. Rob.
,
12
(
5
), p.
054503
. 10.1115/1.4046839
37.
Huang
,
C. L.
,
Lin
,
W. Y.
, and
Hsiao
,
K. M.
,
2010
, “
Free Vibration Analysis of Rotating Euler Beams at High Angular Velocity
,”
Comput. Struct.
,
88
(
17–18
), pp.
991
1001
. 10.1016/j.compstruc.2010.06.001
38.
Derderian
,
J.
,
Howell
,
L.
,
Murphy
,
M.
,
Lyon
,
S.
, and
Pack
,
S.
,
1996
, “
Compliant Parallel-Guiding Mechanisms
,”
Proceedings of the 1996 ASME Mechanisms Conference
,
Irvine, CA
,
Aug. 18–22
, p.
V02AT02A017
.
39.
Culpepper
,
M. L.
,
DiBiasio
,
C. M.
,
Panas
,
R. M.
,
Magleby
,
S.
, and
Howell
,
L. L.
,
2006
, “
Simulation of a Carbon Nanotube-Based Compliant Parallel-Guiding Mechanism: A Nanomechanical Building Block
,”
Appl. Phys. Lett.
,
89
(
20
), p.
203111
. 10.1063/1.2388143
40.
Howell
,
L. L.
,
2001
,
Compliant Mechanisms
,
John Wiley & Sons
,
Hoboken, NJ
.
41.
Park
,
J.-J.
,
Kim
,
B.-S.
,
Song
,
J.-B.
, and
Kim
,
H.-S.
,
2008
, “
Safe Link Mechanism Based on Nonlinear Stiffness for Collision Safety
,”
Mech. Mach. Theory.
,
43
(
10
), pp.
1332
1348
. 10.1016/j.mechmachtheory.2007.10.004
42.
López-Martínez
,
J.
,
Blanco-Claraco
,
J. L.
,
García-Vallejo
,
D.
, and
Giménez-Fernández
,
A.
,
2015
, “
Design and Analysis of a Flexible Linkage for Robot Safe Operation in Collaborative Scenarios
,”
Mech. Mach. Theory
,
92
, pp.
1
16
. 10.1016/j.mechmachtheory.2015.04.018
43.
Zhang
,
M.
,
Laliberté
,
T.
, and
Gosselin
,
C.
,
2016
, “
Force Capabilities of Two-Degree-of-Freedom Serial Robots Equipped With Passive Isotropic Force Limiters
,”
ASME J. Mech. Rob.
,
8
(
5
), p.
051002
. 10.1115/1.4032120
You do not currently have access to this content.