Abstract

This paper presents a modeling and design exploration study of a novel twisting wing whose motion is enabled by a tensegrity mechanism. The aerodynamic characteristics of the twisting wing, which does not require control surfaces to modulate its shape, are compared with those of a conventional wing having a control surface. It is shown via computational fluid dynamics analyses that the twisting wing displays higher lift-to-drag ratio than the conventional wing and hence the twisting wing is more aerodynamically efficient. Subsequently, the torsional tensegrity mechanism, composed of multiple tensegrity cylindrical cells forming a column along the wingspan, is described. A finite element model of the wing incorporating this mechanism is developed. Using the model, a design of experimental study of the influence of the topological parameters of the torsional tensegrity mechanism on the twist angle, mass, and stress in different components of the wing is performed. A wingspan of 142.24 cm and a chord length of 25.31 cm are assumed, corresponding to those of the Carl Goldberg Falcon 56 Mk II R/C unmanned aerial vehicle. For a wing of such dimensions, the maximum achievable twist angle from root to tip per unit mass without any component exceeding their allowable stress is 5.93 deg/kg, which is sufficiently large to allow for effective modulation of the aerodynamic characteristics of the wing. The torsional tensegrity mechanism for this design consists of eight cylindrical cells and four sets of actuator wires along the circumference of each cell.

References

1.
Romeu
,
R.
,
2018
, “
Flight Control Through Vectored Propulsion
,” 2018
AIAA Aerospace Sciences Meeting
,
Kissimmee, FL
,
Jan. 8–12
, p.
0765
.
2.
Warsop
,
C.
, and
Crowther
,
W.
,
2019
, “
NATO AVT-239 Task Group: Flight Demonstration of Fluidic Flight Controls on the MAGMA Subscale Demonstrator Aircraft
,”
AIAA Scitech 2019 Forum
,
San Diego, CA
,
Jan. 7–11
, p.
0282
.
3.
Kota
,
S.
,
Osborn
,
R.
,
Ervin
,
G.
,
Maric
,
D.
,
Flick
,
P.
, and
Paul
,
D.
,
2009
, “
Mission Adaptive Compliant Wing—Design, Fabrication and Flight Test
,”
RTO Applied Vehicle Technology Panel (AVT) Symposium, RTO-MP-AVT-168
,
Evora, Portugal
,
Apr. 20
, pp.
18-1
18-20
.
4.
Phillips
,
W.
,
Alley
,
N.
, and
Goodrich
,
W.
,
2004
, “
Lifting-Line Analysis of Roll Control and Variable Twist
,”
J. Aircr.
,
41
(
5
), pp.
1169
1176
.
5.
Gabor
,
O. S.
,
Koreanschi
,
A.
, and
Botez
,
R. M.
,
2012
, “
Low-Speed Aerodynamic Characteristics Improvement of ATR 42 Airfoil Using a Morphing Wing Approach
,”
IECON 2012—38th Annual Conference on IEEE Industrial Electronics Society
,
Montreal, QC, Canada
,
Oct. 25–28
, pp.
5451
5456
.
6.
Beyene
,
A.
, and
Peffley
,
J.
,
2007
, “
A Morphing Blade for Wave and Wind Energy Conversion
,”
OCEANS 2007-Europe
,
Aberdeen, UK
,
June 18–21
,
IEEE
, pp.
1
6
.
7.
Wang
,
W.
,
Caro
,
S.
,
Bennis
,
F.
, and
Salinas Mejia
,
O. R.
,
2014
, “
A Simplified Morphing Blade for Horizontal Axis Wind Turbines
,”
ASME J. Sol. Energy Eng.
,
136
(
1
), p.
011018
.
8.
Wang
,
W.
,
Caro
,
S.
,
Bennis
,
F.
,
Soto
,
R.
, and
Crawford
,
B.
,
2015
, “
Multi-objective Robust Optimization Using a Postoptimality Sensitivity Analysis Technique: Application to a Wind Turbine Design
,”
ASME J. Mech. Des.
,
137
(
1
), p.
011403
.
9.
Molinari
,
G.
,
Arrieta
,
A. F.
, and
Ermanni
,
P.
,
2014
, “
Aero-Structural Optimization of Three-Dimensional Adaptive Wings With Embedded Smart Actuators
,”
AIAA J.
,
52
(
9
), pp.
1940
1951
.
10.
Hodson
,
J. D.
,
Christopherson
,
A. P.
,
Deaton
,
J. D.
,
Pankonien
,
A. M.
,
Reich
,
G. W.
, and
Beran
,
P. S.
,
2019
, “
Aeroelastic Topology Optimization of a Morphing Airfoil in Supersonic Flow Using Evolutionary Design
,”
AIAA Scitech 2019 Forum
,
San Diego, CA
,
Jan. 7–11
, p.
1466
.
11.
Bielefeldt
,
B. R.
,
Hartl
,
D. J.
,
Hodson
,
J. D.
,
Reich
,
G. W.
,
Beran
,
P. S.
,
Pankonien
,
A. M.
, and
Deaton
,
J. D.
,
2019
, “
Graph-Based Interpretation of L-System Encodings Toward Aeroelastic Topology Optimization of a Morphing Airfoil in Supersonic Flow
,”
Smart Materials, Adaptive Structures and Intelligent Systems
,
Louisville, KY
,
Sept. 9–11
, Vol.
59131
, p.
V001T04A013
.
12.
Vasista
,
S.
,
Tong
,
L.
, and
Wong
,
K.
,
2012
, “
Realization of Morphing Wings: A Multidisciplinary Challenge
,”
J. Aircr.
,
49
(
1
), pp.
11
28
.
13.
Skelton
,
R. E.
, and
de Oliveira
,
M. C.
,
2009
,
Tensegrity Systems
, Vol.
1
,
Springer
,
New York
.
14.
Boehler
,
Q.
,
Charpentier
,
I.
,
Vedrines
,
M. S.
, and
Renaud
,
P.
,
2015
, “
Definition and Computation of Tensegrity Mechanism Workspace
,”
ASME J. Mech. Rob.
,
7
(
4
), p.
044502
.
15.
Furet
,
M.
, and
Wenger
,
P.
,
2019
, “
Kinetostatic Analysis and Actuation Strategy of a Planar Tensegrity 2-X Manipulator
,”
ASME J. Mech. Rob.
,
11
(
6
), p.
060904
.
16.
Skelton
,
R.
,
Fraternali
,
F.
,
Carpentieri
,
G.
, and
Micheletti
,
A.
,
2014
, “
Minimum Mass Design of Tensegrity Bridges With Parametric Architecture and Multiscale Complexity
,”
Mech. Res. Commun.
,
58
, pp.
124
132
.
17.
Goyal
,
R.
,
Skelton
,
R. E.
, and
Peraza Hernandez
,
E. A.
,
2020
, “
Design of Minimal Mass Load-Bearing Tensegrity Lattices
,”
Mech. Res. Commun.
,
103
, p.
103477
.
18.
Goyal
,
R.
,
Skelton
,
R. E.
, and
Peraza Hernandez
,
E. A.
,
2020
, “
Efficient Design of Lightweight Reinforced Tensegrities Under Local and Global Failure Constraints
,”
ASME J. Appl. Mech.
,
87
(
11
), p.
111005
.
19.
Baldwin
,
D. D.
, and
Peraza Hernandez
,
E. A.
,
2020
, “
Design of Tensegrity-Based Lattices With Engineered Load-Bearing and Thermal Expansion Properties
,”
ASME 2020 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Virtual Conference
,
Aug. 17–19
.
20.
Silverman
,
R. E.
, and
Peraza Hernandez
,
E. A.
,
2019
, “
Designing Lightweight Tensegrity-Based Structures and Materials of Tailorable Thermal Expansion
,”
International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Anaheim, CA
,
Aug. 18–21
, Vol.
59230
,
American Society of Mechanical Engineers
, p.
V05AT07A032
.
21.
Pajunen
,
K.
,
Johanns
,
P.
,
Pal
,
R. K.
,
Rimoli
,
J. J.
, and
Daraio
,
C.
,
2019
, “
Design and Impact Response of 3D-Printable Tensegrity-Inspired Structures
,”
Mater. Des.
,
182
, p.
107966
.
22.
Rimoli
,
J. J.
,
2016
, “
On the Impact Tolerance of Tensegrity-Based Planetary Landers
,”
57th AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference
,
San Diego, CA
,
Jan. 4–8
, p.
1511
.
23.
Goyal
,
R.
,
Peraza Hernandez
,
E. A.
, and
Skelton
,
R. E.
,
2019
, “
Analytical Study of Tensegrity Lattices for Mass-Efficient Mechanical Energy Absorption
,”
Int. J. Space Struct.
,
34
(
1–2
), pp.
3
21
.
24.
Myszka
,
D. H.
, and
Joo
,
J. J.
,
2018
, “
A Study on the Structural Suitability of Tensegrity Structures to Serve as Morphing Aircraft Wings
,”
ASME 2018 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
, p.
V05BT07A005
, Paper No. DETC2018-85945.
25.
Moored
,
K. W.
, and
Bart-Smith
,
H.
,
2005
, “
The Analysis of Tensegrity Structures for the Design of a Morphing Wing
,”
ASME 2005 International Mechanical Engineering Congress and Exposition
,
Orlando, FL
,
Nov. 5–11
, pp.
81
89
.
26.
Henrickson
,
J. V.
,
Skelton
,
R. E.
, and
Valasek
,
J.
,
2016
, “
Shape Control of Tensegrity Airfoils
,”
AIAA Guidance, Navigation, and Control Conference
,
San Diego, CA
,
Jan. 4–8
, p.
1864
.
27.
Mills
,
A. S.
,
Myszka
,
D. H.
,
Woods
,
D. C.
,
Joo
,
J. J.
, and
Murray
,
A. P.
,
2020
, “
The Structural Suitability of Tensegrity Aircraft Wings
,”
AIAA Scitech 2020 Forum
,
Orlando, FL
,
Jan. 6–10
, p.
0480
.
28.
Tensegrity Wing Senior Design Students
,
2019
, “
Tensegrity Wing Project
,” http://projects.eng.uci.edu/projects/2018-2019/tensegrity-wing, Last Accessed 09/27/2020
29.
Saunders
,
R.
,
Hartl
,
D.
,
Herrington
,
J.
,
Hodge
,
L.
, and
Mabe
,
J.
,
2014
, “
Optimization of a Composite Morphing Wing With Shape Memory Alloy Torsional Actuators
,”
Smart Materials, Adaptive Structures and Intelligent Systems
,
Newport, RI
,
Sept. 8–10
, Vol.
46155
,
American Society of Mechanical Engineers
, p.
V002T02A014
.
30.
Jenett
,
B.
,
Calisch
,
S.
,
Cellucci
,
D.
,
Cramer
,
N.
,
Gershenfeld
,
N.
,
Swei
,
S.
, and
Cheung
,
K. C.
,
2017
, “
Digital Morphing Wing: Active Wing Shaping Concept Using Composite Lattice-Based Cellular Structures
,”
Soft Rob.
,
4
(
1
), pp.
33
48
.
31.
Chung
,
Y. S.
,
Lee
,
J.-H.
,
Jang
,
J. H.
,
Choi
,
H. R.
, and
Rodrigue
,
H.
,
2019
, “
Jumping Tensegrity Robot Based on Torsionally Prestrained SMA Springs
,”
ACS Appl. Mater. Interfaces
,
11
(
43
), pp.
40793
40799
.
32.
Rodrigue
,
H.
,
Cho
,
S.
,
Han
,
M.-W.
,
Bhandari
,
B.
,
Shim
,
J.-E.
, and
Ahn
,
S.-H.
,
2016
, “
Effect of Twist Morphing Wing Segment on Aerodynamic Performance of UAV
,”
J. Mech. Sci. Technol.
,
30
(
1
), pp.
229
236
.
33.
Pecora
,
R.
,
Amoroso
,
F.
, and
Lecce
,
L.
,
2012
, “
Effectiveness of Wing Twist Morphing in Roll Control
,”
J. Aircr.
,
49
(
6
), pp.
1666
1674
.
34.
Phillips
,
W. F.
,
Fugal
,
S. R.
, and
Spall
,
R. E.
,
2006
, “
Minimizing Induced Drag With Wing Twist, Computational-Fluid-Dynamics Validation
,”
J. Aircr.
,
43
(
2
), pp.
437
444
.
35.
Airfoil Tools
,
2020
, “
Falcon—Falcon Airfoil Used on the Carl Goldberg Falcon 56 Mk II R/C Powerplane
,”
Data Retrieved From Website of Airfoil Tools
, http://airfoiltools.com/airfoil/details?airfoil=falcon-il, Last Accessed September 27, 2020.
36.
Selig
,
M.
,
1997
,
Summary of Low Speed Airfoil Data
, Vol.
3
,
SoarTech Publications
,
Virginia Beach, VA
,
No. 3 in Summary of Low Speed Airfoil Data
.
37.
Pham
,
N. K.
, and
Peraza Hernandez
,
E. A.
,
2020
, “
Design Exploration of a Tensegrity-Based Twisting Wing
,”
ASME 2020 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, American Society of Mechanical Engineers Digital Collection
,
Virtual Conference
,
Aug. 17–19
.
38.
MATWEB Material Property Data
,
2020
, “
Aluminum 6061-T6; 6061-T651
,” Data Retrieved From the MatWeb Website, http://www.matweb.com/search/DataSheet.aspx?MatGUID=b8d536e0b9b54bd7b69e4124d8f1d20a&ckck=1, Last Accessed September 27, 2020.
39.
ASM, ASM Aerospace Specification Metals Inc. 2016. “Ti, Titanium. “6AL-4V (Grade 5), Annealed.”
40.
Covestro
,
2020
, “
Desmopan Copolymers: Flexible, Durable and Versatile
,”
Data Retrieved From Website of Covestro
, https://www.solutions.covestro.com/en/brands/desmopan, Last Accessed September 27, 2020.
41.
Boulbes
,
R. J.
,
2020
,
Troubleshooting Finite-Element Modeling With Abaqus
,
Springer
,
Cham, Switzerland
.
42.
Joo
,
J. J.
,
Reich
,
G. W.
, and
Westfall
,
J. T.
,
2009
, “
Flexible Skin Development for Morphing Aircraft Applications Via Topology Optimization
,”
J. Int. Mater. Syst. Struct.
,
20
(
16
), pp.
1969
1985
.
43.
Vos
,
R.
,
Gürdal
,
Z.
, and
Abdalla
,
M.
,
2010
, “
Mechanism for Warp-Controlled Twist of a Morphing Wing
,”
J. Aircr.
,
47
(
2
), pp.
450
457
.
44.
dos Santos
,
F. A.
,
Rodrigues
,
A.
, and
Micheletti
,
A.
,
2015
, “
Design and Experimental Testing of an Adaptive Shape-Morphing Tensegrity Structure, With Frequency Self-Tuning Capabilities, Using Shape-Memory Alloys
,”
Smart Mater. Struct.
,
24
(
10
), p.
105008
.
45.
Butler
,
G. M.
, and
Peraza Hernandez
,
E. A.
,
2020
, “
Tensegrity Structures Incorporating Actuator and Pseudoelastic Shape Memory Alloys
,”
International Mechanical Engineering Congress and Exposition
,
Virtual, Online
,
Nov. 16–19
.
46.
Rohmer
,
J. L.
,
Peraza Hernandez
,
E. A.
,
Skelton
,
R. E.
,
Hartl
,
D. J.
, and
Lagoudas
,
D. C.
,
2015
, “
An Experimental and Numerical Study of Shape Memory Alloy-Based Tensegrity/Origami Structures
,”
ASME 2015 International Mechanical Engineering Congress and Exposition
,
Houston, TX
,
Nov. 13–19
.
47.
Martins
,
D.
, and
Gonçalves
,
P. J. P.
,
2019
, “
On the Dynamics of a Smart Tensegrity Structure Using Shape Memory Alloy
,”
J. Phys.: Conf. Ser.
,
1264
(
1
), p.
012001
.
You do not currently have access to this content.