Abstract

This article reports a method for regulating the internal forces during in-hand manipulation of an unknown shaped object with soft robotic fingers. The internal forces ensure that the object does not move between the robotic fingers, thus improving the grip. It is shown that if soft fingers show bounded conformity and the finger–object interface have bounded relative slip, then the relative angular velocity between the object and the fingertip coordinate frame in contact is bounded. Detailed derivation of the proof is presented. The proof is later used to define a new metric of relative slip. The metric is used to design a sliding mode control algorithm that results in an efficient grip, which is robust toward uncertainty in object shape. The robotic fingers are assumed to be under virtual rigidity constraint, that is, the distance between the fingertips do not change. The control algorithm is attractive as it skirts requirement of information of the shape of the object or to solve optimization problems. The grip with the robust control algorithm is shown to be finite-time stable through Lyapunov’s method. The methodology is demonstrated using simulations.

References

1.
Andrychowicz
,
M.
,
Baker
,
B.
,
Chociej
,
M.
,
Jozefowicz
,
R.
,
McGrew
,
B.
,
Pachocki
,
J.
,
Petron
,
A.
,
Plappert
,
M.
,
Powell
,
G.
,
Ray
,
A.
,
Jonas
,
S.
,
Szymon
,
S.
,
Josh
,
T.
,
Peter
,
W.
,
Lilian
,
W.
, and
Zaremba
,
W.
,
2018
, “
Learning Dexterous In-Hand Manipulation
,”
arXiv preprint arXiv:1808.00177
. https://arxiv.org/abs/1808.00177
2.
Bicchi
,
A.
,
1993
, “
Force Distribution in Multiple Whole-Limb Manipulation
,”
Proceedings IEEE International Conference on Robotics and Automation
,
Atlanta, GA
,
IEEE
, pp.
196
201
.
3.
Jacobsen
,
S.
,
Iversen
,
E.
,
Knutti
,
D.
,
Johnson
,
R.
, and
Biggers
,
K.
,
1986
, “
Design of the Utah/Mit Dextrous Hand
,”
Proceedings. 1986 IEEE International Conference on Robotics and Automation
,
San Francisco, CA
, Vol.
3
,
IEEE
, pp.
1520
1532
.
4.
Loucks
,
C.
,
Johnson
,
V.
,
Boissiere
,
P.
,
Starr
,
G.
, and
Steele
,
J.
,
1987
, “
Modeling and Control of the Stanford/jpl Hand
,”
Proceedings of 1987 IEEE International Conference on Robotics and Automation
,
Raleigh, NC
, Vol.
4
,
IEEE
, pp.
573
578
.
5.
Crisman
,
J. D.
,
Kanojia
,
C.
, and
Zeid
,
I.
,
1996
, “
Graspar: A Flexible, Easily Controllable Robotic Hand
,”
IEEE Rob. Auto. Magaz.
,
3
(
2
), pp.
32
38
.
6.
Ruoff
,
C. F.
, and
Salisbury
,
J. K.
Jr.
,
1990
, “
Multi-Fingered Robotic Hand
,”
US Patent 4, 921, 293
.
7.
Kawasaki
,
H.
,
Komatsu
,
T.
, and
Uchiyama
,
K.
,
2002
, “
Dexterous Anthropomorphic Robot Hand With Distributed Tactile Sensor: Gifu Hand II
,”
IEEE/ASME Trans. Mechatron.
,
7
(
3
), pp.
296
303
.
8.
Lee
,
D.-H.
,
Park
,
J.-H.
,
Park
,
S.-W.
,
Baeg
,
M.-H.
, and
Bae
,
J.-H.
,
2016
, “
Kitech-Hand: A Highly Dexterous and Modularized Robotic Hand
,”
IEEE/ASME Trans. Mechatron.
,
22
(
2
), pp.
876
887
.
9.
Yoshikawa
,
T.
, and
Nagai
,
K.
,
1991
, “
Manipulating and Grasping Forces in Manipulation by Multifingered Robot Hands
,”
IEEE. Trans. Rob. Autom.
,
7
(
1
), pp.
67
77
.
10.
Nguyen
,
V.-D.
,
1988
, “
Constructing Force-Closure Grasps
,”
Int. J. Rob. Res.
,
7
(
3
), pp.
3
16
.
11.
Trinkle
,
J. C.
,
1992
, “
A Quantitative Test for Form Closure Grasps
,”
Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems
,
Raleigh, NC
, Vol.
3
,
IEEE
, pp.
1670
1677
.
12.
Rimon
,
E.
, and
Burdick
,
J.
,
1996
, “
On Force and Form Closure for Multiple Finger Grasps
,”
Proceedings of IEEE International Conference on Robotics and Automation
,
Minneapolis, MN
, Vol.
2
,
IEEE
, pp.
1795
1800
.
13.
Kumar
,
V. R.
, and
Waldron
,
K. J.
,
1988
, “
Force Distribution in Closed Kinematic Chains
,”
IEEE J. Rob. Auto.
,
4
(
6
), pp.
657
664
.
14.
Zuo
,
B.-R.
, and
Qian
,
W.-H.
,
2000
, “
A General Dynamic Force Distribution Algorithm for Multifingered Grasping
,”
IEEE Trans. Syst., Man, Cybern., Part B (Cybern.)
,
30
(
1
), pp.
185
192
.
15.
Mukherjee
,
S.
, and
Waldron
,
K.
,
1992
, “
An Exact Optimization of Interaction Forces in Three-Fingered Manipulation
,”
ASME J. Mech. Des.
,
114
(
1
), pp.
48
54
.
16.
Cloutier
,
A.
, and
Yang
,
J.
,
2018
, “
Grasping Force Optimization Approaches for Anthropomorphic Hands
,”
ASME J. Mech. Rob.
,
10
(
1
), p.
011004
.
17.
Ferrari
,
C.
, and
Canny
,
J. F.
,
1992
, “
Planning Optimal Grasps.
,”
ICRA
,
Nice, France
, Vol.
3
, pp.
2290
2295
.
18.
Park
,
Y. C.
, and
Starr
,
G. P.
,
1992
, “
Grasp Synthesis of Polygonal Objects Using a Three-Fingered Robot Hand
,”
Int. J. Rob. Res.
,
11
(
3
), pp.
163
184
.
19.
Roa
,
M. A.
, and
Suárez
,
R.
,
2009
, “
Computation of Independent Contact Regions for Grasping 3-d Objects
,”
IEEE Trans. Rob.
,
25
(
4
), pp.
839
850
.
20.
Sahbani
,
A.
,
El-Khoury
,
S.
, and
Bidaud
,
P.
,
2012
, “
An Overview of 3d Object Grasp Synthesis Algorithms
,”
Rob. Auto. Syst.
,
60
(
3
), pp.
326
336
.
21.
Miao
,
W.
,
Li
,
G.
,
Jiang
,
G.
,
Fang
,
Y.
,
Ju
,
Z.
, and
Liu
,
H.
,
2015
, “
Optimal Grasp Planning of Multi-Fingered Robotic Hands: A Review
,”
Appl. Comput. Math.: Int. J.
,
14
(
3
), pp.
238
247
.
22.
Miller
,
A. T.
, and
Allen
,
P. K.
,
1999
, “
Examples of 3d Grasp Quality Computations
,”
Proceedings 1999 IEEE International Conference on Robotics and Automation (Cat. No. 99CH36288C)
,
Detroit, MI
, Vol.
2
,
IEEE
, pp.
1240
1246
.
23.
Roa
,
M. A.
, and
Suárez
,
R.
,
2015
, “
Grasp Quality Measures: Review and Performance
,”
Auto. Rob.
,
38
(
1
), pp.
65
88
.
24.
Suárez
,
R.
,
Cornella
,
J.
, and
Garzón
,
M. R.
,
2006
,
Grasp Quality Measures
,
Institut d'Organització i Control de Sistemes Industrials
,
Barcelona, Spain
.
25.
Hsiao
,
K.
,
Chitta
,
S.
,
Ciocarlie
,
M.
, and
Jones
,
E. G.
,
2010
, “
Contact-Reactive Grasping of Objects With Partial Shape Information
,”
2010 IEEE/RSJ International Conference on Intelligent Robots and Systems
,
Taipei, Taiwan
,
IEEE
, pp.
1228
1235
.
26.
Chavan-Dafle
,
N.
, and
Rodriguez
,
A.
,
2015
, “
Prehensile Pushing: In-Hand Manipulation With Push-Primitives
,”
2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
,
Hamburg, Germany
,
IEEE
, pp.
6215
6222
.
27.
Chavan-Dafle
,
N.
, and
Rodriguez
,
A.
,
2018
, “
Stable Prehensile Pushing: In-Hand Manipulation With Alternating Sticking Contacts
,”
2018 IEEE International Conference on Robotics and Automation (ICRA)
,
Brisbane, Australia
,
IEEE
, pp.
254
261
.
28.
Ma
,
R. R.
,
Rojas
,
N.
, and
Dollar
,
A. M.
,
2016
, “
Spherical Hands: Toward Underactuated, In-hand Manipulation Invariant to Object Size and Grasp Location
,”
ASME J. Mech. Rob.
,
8
(
6
), p.
061021
.
29.
Govindan
,
N.
, and
Thondiyath
,
A.
,
2019
, “
Design and Analysis of a Multimodal Grasper Having Shape Conformity and Within-Hand Manipulation With Adjustable Contact Forces
,”
ASME J. Mech. Rob.
,
11
(
5
), p.
051012
.
30.
Ospina
,
D.
, and
Ramirez-Serrano
,
A.
,
2020
, “
Sensorless In-Hand Manipulation by an Underactuated Robot Hand
,”
ASME J. Mech. Rob.
,
12
(
5
), p.
051009
.
31.
Montana
,
D. J.
,
1988
, “
The Kinematics of Contact and Grasp
,”
Int. J. Rob. Res.
,
7
(
3
), pp.
17
32
.
32.
Han
,
L.
,
Guan
,
Y.-S.
,
Li
,
Z.
,
Shi
,
Q.
, and
Trinkle
,
J. C.
,
1997
, “
Dextrous Manipulation With Rolling Contacts
,”
Proceedings of International Conference on Robotics and Automation
,
Albuquerque, NM
, Vol.
2
,
IEEE
, pp.
992
997
.
33.
Han
,
L.
,
Li
,
Z.
,
Trinkle
,
J. C.
,
Qin
,
Z.
, and
Jiang
,
S.
,
2000
, “
The Planning and Control of Robot Dextrous Manipulation
,”
Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No. 00CH37065)
,
San Francisco, CA
, Vol.
1
,
IEEE
, pp.
263
269
.
34.
Sankar
,
N.
,
Kumar
,
V.
, and
Yun
,
X.
,
1996
, “
Velocity and Acceleration Analysis of Contact Between Three-Dimensional Rigid Bodies
,”
ASME J. Appl. Mech.
,
63
(
4
), pp.
974
984
.
35.
Sarkar
,
N.
,
Yun
,
X.
, and
Kumar
,
V.
,
1997
, “
Dynamic Control of 3-d Rolling Contacts in Two-Arm Manipulation
,”
IEEE. Trans. Rob. Autom.
,
13
(
3
), pp.
364
376
.
36.
Chaudhury
,
A. N.
, and
Ghosal
,
A.
,
2018
, “
Workspace of Multifingered Hands Using Monte Carlo Method
,”
ASME J. Mech. Rob.
,
10
(
4
), p.
041003
.
37.
Sarkar
,
N.
,
Yun
,
X.
, and
Kumar
,
V.
,
1997
, “
Control of Contact Interactions With Acatastatic Nonholonomic Constraints
,”
Int. J. Rob. Res.
,
16
(
3
), pp.
357
374
.
38.
Yoshikawa
,
T.
,
2000
, “
Control Algorithm for Grasping and Manipulation by Multifingered Robot Hands Using Virtual Truss Model Representation of Internal Force
,”
Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No. 00CH37065)
,
San Francisco, CA
, Vol.
1
,
IEEE
, pp.
369
376
.
39.
Platt
,
R. Jr.
,
Fagg
,
A. H.
, and
Grupen
,
R. A.
,
2010
, “
Null-Space Grasp Control: Theory and Experiments
,”
IEEE Trans. Rob.
,
26
(
2
), pp.
282
295
.
40.
Lin
,
H.-C.
,
Smith
,
J.
,
Babarahmati
,
K. K.
,
Dehio
,
N.
, and
Mistry
,
M.
,
2018
, “
A Projected Inverse Dynamics Approach for Multi-Arm Cartesian Impedance Control
,”
2018 IEEE International Conference on Robotics and Automation (ICRA)
,
Brisbane, Australia
,
IEEE
, pp.
1
5
.
41.
Balatti
,
P.
,
Kanoulas
,
D.
,
Rigano
,
G. F.
,
Muratore
,
L.
,
Tsagarakis
,
N. G.
, and
Ajoudani
,
A.
,
2018
, “
A Self-Tuning Impedance Controller for Autonomous Robotic Manipulation
,”
2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
,
Madrid, Spain
,
IEEE
, pp.
5885
5891
.
42.
Dai
,
G.-B.
, and
Liu
,
Y.-C.
,
2016
, “
Distributed Coordination and Cooperation Control for Networked Mobile Manipulators
,”
IEEE Trans. Indus. Electron.
,
64
(
6
), pp.
5065
5074
.
43.
Dehio
,
N.
,
Smith
,
J.
,
Wigand
,
D. L.
,
Xin
,
G.
,
Lin
,
H.-C.
,
Steil
,
J. J.
, and
Mistry
,
M.
,
2018
, “
Modeling and Control of Multi-Arm and Multi-Leg Robots: Compensating for Object Dynamics During Grasping
,”
2018 IEEE International Conference on Robotics and Automation (ICRA)
,
Brisbane, Australia
,
IEEE
, pp.
294
301
.
44.
Wu
,
M.-H.
,
Ogawa
,
S.
, and
Konno
,
A.
,
2016
, “
Symmetry Position/Force Hybrid Control for Cooperative Object Transportation Using Multiple Humanoid Robots
,”
Adv. Rob.
,
30
(
2
), pp.
131
149
.
45.
Zhao
,
T.
,
Liu
,
Y.
,
Li
,
Z.
,
Su
,
C.-Y.
, and
Feng
,
Y.
,
2018
, “
Adaptive Control and Optimization of Mobile Manipulation Subject to Input Saturation and Switching Constraints
,”
IEEE Trans. Auto. Sci. Eng
,
16
(
4
), pp.
1543
1555
.
46.
Lee
,
A. X.
,
Gupta
,
A.
,
Lu
,
H.
,
Levine
,
S.
, and
Abbeel
,
P.
,
2015
, “
Learning From Multiple Demonstrations Using Trajectory-Aware Non-Rigid Registration With Applications to Deformable Object Manipulation
,”
2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
,
Hamburg, Germany
,
IEEE
, pp.
5265
5272
.
47.
Hu
,
Z.
,
Han
,
T.
,
Sun
,
P.
,
Pan
,
J.
, and
Manocha
,
D.
,
2019
, “
3-d Deformable Object Manipulation Using Deep Neural Networks
,”
IEEE Rob. Auto. Lett.
,
4
(
4
), pp.
4255
4261
.
48.
Vanteddu
,
T.
, and
Ben-Tzvi
,
P.
,
2020
, “
Stable Grasp Control With a Robotic Exoskeleton Glove
,”
ASME J. Mech. Rob.
,
12
(
6
), p.
061015
.
49.
She
,
Y.
,
Li
,
C.
,
Cleary
,
J.
, and
Su
,
H.-J.
,
2015
, “
Design and Fabrication of a Soft Robotic Hand With Embedded Actuators and Sensors
,”
ASME J. Mech. Rob.
,
7
(
2
), p.
021007
.
50.
Nishimura
,
T.
,
Fujihira
,
Y.
, and
Watanabe
,
T.
,
2017
, “
Microgripper-Embedded Fluid Fingertip-Enhancing Positioning and Holding Abilities for Versatile Grasping
,”
ASME J. Mech. Rob.
,
9
(
6
), p.
061017
.
51.
Mouazé
,
N.
, and
Birglen
,
L.
,
2021
, “
Deformation Modeling of Compliant Robotic Fingers Grasping Soft Object
,”
ASME J. Mech. Rob.
,
131
(
1
), p.
011009
.
52.
Lotfiani
,
A.
,
Zhao
,
H.
,
Shao
,
Z.
, and
Yi
,
X.
,
2020
, “
Torsional Stiffness Improvement of a Soft Pneumatic Finger Using Embedded Skeleton
,”
ASME J. Mech. Rob.
,
12
(
1
), p.
011016
.
53.
Barbagli
,
F.
,
Frisoli
,
A.
,
Salisbury
,
K.
, and
Bergamasco
,
M.
,
2004
, “
Simulating Human Fingers: A Soft Finger Proxy Model and Algorithm
,”
12th International Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems, 2004. HAPTICS’04. Proceedings
,
Chicago, IL
,
IEEE
, pp.
9
17
.
54.
Inoue
,
T.
, and
Hirai
,
S.
,
2006
, “
Elastic Model of Deformable Fingertip for Soft-Fingered Manipulation
,”
IEEE Trans. Rob.
,
22
(
6
), pp.
1273
1279
.
55.
Spiers
,
A. J.
,
Calli
,
B.
, and
Dollar
,
A. M.
,
2018
, “
Variable-Friction Finger Surfaces to Enable Within-Hand Manipulation Via Gripping and Sliding
,”
IEEE Rob. Auto. Lett.
,
3
(
4
), pp.
4116
4123
.
56.
Young
,
K. D.
,
Utkin
,
V. I.
, and
Ozguner
,
U.
,
1999
, “
A Control Engineer’s Guide to Sliding Mode Control
,”
IEEE Trans. Control Syst. Technol.
,
7
(
3
), pp.
328
342
.
57.
V. Utkin
,
J. G.
, and
Shi
,
J.
,
2009
,
Sliding Mode Control in Electro-Mechanical Systems
,
CRC Press
,
Boca Raton, FL
.
58.
Jong-Min Yang
,
J.-H. K.
,
1999
, “
Sliding Mode Control for Trajectory Tracking of Nonholonomic Wheeled Mobile Robots
,”
IEEE. Trans. Rob. Autom.
,
15
(
3
), pp.
578
587
.
59.
Mukherjee
,
J.
,
Mukherjee
,
S.
, and
Kar
,
I. N.
,
2017
, “
Sliding Mode Control of Planar Snake Robot With Uncertainty Using Virtual Holonomic Constraints
,”
IEEE Rob. Auto. Lett.
,
2
(
2
), pp.
1077
1084
.
60.
Mukherjee
,
J.
,
Kar
,
I. N.
, and
Mukherjee
,
S.
,
2017
, “
Adaptive Sliding Mode Control for Head-Angle and Velocity Tracking of Planar Snake Robot
,”
2017 11th Asian Control Conference (ASCC)
,
Gold Coast, Australia
, pp.
537
542
.
61.
Harl
,
N.
, and
Balakrishnan
,
S. N.
,
2010
, “
Reentry Terminal Guidance Through Sliding Mode Control
,”
J. Guidance, Control, Dyn.
,
33
(
1
), pp.
186
199
.
62.
B. Bandyopadhyay
,
S. J.
, and
Spurgeon
,
S. K.
,
2013
,
Advances in Sliding Mode Control: Concept, Theory and Implementation
,
Springer
,
Berlin, Heidelberg
.
63.
Bartolini
,
G.
, and
Ferrara
,
A.
,
1996
, “
Multi-Iput Sliding Mode Control of a Class of Uncertain Nonlinear Systems
,”
IEEE Trans. Auto. Control
,
41
(
11
), pp.
1662
1666
.
64.
Sundaralingam
,
B.
, and
Hermans
,
T.
,
2017
, “
Relaxed-Rigidity Constraints: In-Grasp Manipulation Using Purely Kinematic Trajectory Optimization
,”
Robotics Science and Systems
,
Cambridge, MA
,
July 12–16
.
65.
Zheng
,
Y.
,
2012
, “
An Efficient Algorithm for a Grasp Quality Measure
,”
IEEE Trans. Rob.
,
29
(
2
), pp.
579
585
.
66.
Zuo
,
B.-R.
, and
Qian
,
W.-H.
,
1999
, “
On the Equivalence of Internal and Interaction Forces in Multifingered Grasping
,”
IEEE. Trans. Rob. Autom.
,
15
(
5
), pp.
934
941
.
67.
Williams
,
D.
, and
Khatib
,
O.
,
1993
, “
The Virtual Linkage: A Model for Internal Forces in Multi-grasp Manipulation
,”
Proceedings IEEE International Conference on Robotics and Automation
,
Atlanta, GA
,
IEEE
, pp.
1025
1030
.
You do not currently have access to this content.