Abstract

A design approach for the quasi-static balancing of four-bar linkages with torsion springs is proposed. Such an approach is useful in the design of quasi-statically balanced fully compliant mechanisms by tuning the stiffness of the pseudo-rigid-body-model. Here, the positive stiffness exhibited by torsion springs at the R-joints is compensated by a negative stiffness function. The negative stiffness is created by a non-zero-free-length linear spring connected between the coupler link and the ground, and where both connecting points trace a line directed to the coupler link’s instant center of rotation. A full example of the static balancing of two compliant linkages for approximate straight path generation is developed, where actuation energy of the compliant designs is reduced in 66% and 54%, respectively.

References

1.
Herder
,
J.
,
2001
, “
Energy-free Systems; Theory, Conception and Design of Statically Balanced Spring Mechanisms
,”
PhD Thesis
,
TU Delft
,
Delft, The Netherlands
, https://repository.tudelft.nl/islandora/object/uuid:8c4240fb-0315-462a-8b3b-efbd0f0e68b6/datastream/OBJ/download
2.
Nathan
,
R. H.
,
1985
, “
A Constant Force Generation Mechanism
,”
J. Mech., Trans., Auto. Design
,
107
(
4
), pp.
508
512
.
3.
Herder
,
J. L.
,
1998
, “
Design of Spring Force Compensation Systems
,”
Mech. Mach. Theory.
,
33
(
1
), pp.
151
161
.
4.
Deepak
,
S. R.
, and
Ananthasuresh
,
G.
,
2012
, “
Static Balancing of a Four-bar Linkage and Its Cognates
,”
Mech. Mach. Theory.
,
48
(
1
), pp.
62
80
.
5.
Rosyid
,
A.
,
El-Khasawneh
,
B.
, and
Alazzam
,
A.
,
2019
, “
Gravity Compensation of Parallel Kinematics Mechanism with Revolute Joints Using Torsional Springs
,”
Mech. Based Design Struct. Mach.
,
48
(
1
), pp.
1
21
.
6.
Radaelli
,
G.
,
Buskermolen
,
R.
,
Barents
,
R.
, and
Herder
,
J.
,
2017
, “
Static Balancing of An Inverted Pendulum with Prestressed Torsion Bars
,”
Mech. Mach. Theory.
,
108
(
1
), pp.
14
26
.
7.
Schenk
,
M.
, and
Guest
,
S.
,
2013
, “
On Zero Stiffness
,”
Proc. Inst. Mech. Eng., Part C: J. Mech. Eng. Sci.
,
228
(
10
), pp.
1701
1714
.
8.
Zhang
,
J.
,
Shaw
,
A. D.
,
Amoozgar
,
M.
,
Friswell
,
M. I.
, and
Woods
,
B. K.
,
2019
, “
Bidirectional Torsional Negative Stiffness Mechanism for Energy Balancing Systems
,”
Mech. Mach. Theory.
,
131
(
1
), pp.
261
277
.
9.
Woods
,
B. K.
, and
Friswell
,
M. I.
,
2016
, “
Spiral Pulley Negative Stiffness Mechanism for Passive Energy Balancing
,”
J. Intell. Mater. Syst. Struct.
,
27
(
12
), pp.
1673
1686
.
10.
Hoetmer
,
K.
,
Woo
,
G.
,
Kim
,
C.
, and
Herder
,
J.
,
2010
, “
Negative Stiffness Building Blocks for Statically Balanced Compliant Mechanisms: Design and Testing
,”
ASME J. Mech. Rob.
,
2
(
4
), p.
041007
.
11.
Wang
,
P.
, and
Xu
,
Q.
,
2018
, “
Design and Modeling of Constant-force Mechanisms: A Survey
,”
Mech. Mach. Theory.
,
119
(
1
), pp.
1
21
.
12.
Gallego
,
J. A.
, and
Herder
,
J. L.
,
2010
, “
Criteria for the Static Balancing of Compliant Mechanisms
,”
Proceedings of the ASME Design Engineering Technical Conference
,
Montreal, Quebec, Canada
,
Aug. 15–18
.
13.
Lamers
,
A. J.
,
Gallego Sánchez
,
J. A.
, and
Herder
,
J. L.
,
2015
, “
Design of a Statically Balanced Fully Compliant Grasper
,”
Mech. Mach. Theory.
,
92
(
0
), pp.
230
239
.
14.
Barents
,
R.
,
Schenk
,
M.
,
van Dorsser
,
W. D.
,
Wisse
,
B. M.
, and
Herder
,
J. L.
,
2011
, “
Spring-to-Spring Balancing As Energy-Free Adjustment Method in Gravity Equilibrators
,”
ASME J. Mech. Des.
,
133
(
6
), p.
061010
.
15.
Arakelian
,
V.
,
2015
, “
Gravity Compensation in Robotics
,”
Adv. Rob.
,
30
(
2
), pp.
1
18
.
16.
Howell
,
L. L.
,
2002
,
Compliant Mechanisms
,
John Wiley & Sons
,
New York
.
17.
Vidosic
,
J. P.
, and
Tesar
,
D.
,
1967
, “
Selection of Four-bar Mechanisms Having Required Approximate Straight-line Outputs. Part I. the General Case of the Bali-burmester Point
,”
J. Mech.
,
2
(
1
), pp.
23
44
.
18.
Timoshenko
,
S. P.
, and
Young
,
D. H.
,
1965
,
Theory of Structures
, 2nd ed.,
McGraw-Hill
,
New York
.
19.
Norton
,
R. L.
,
1998
,
Design of Machinery: An Introduction to the Synthesis and Analysis of Mechanisms and Machines
, 2nd ed., (
McGraw-Hill Series in Mechanical Engineering
),
WCB/McGraw-Hill
,
Boston, MA
.
20.
Hartenberg
,
R. S.
, and
Denavit
,
J.
,
1964
,
Kinematic Synthesis of Linkages
,
McGraw-Hill
,
New York
.
21.
Gallego
,
J. A.
,
2013
, “
Statically Balanced Compliant Mechanisms: Theory and Synthesis
,”
PhD Thesis
,
TU Delft
,
Delft, The Netherlands
, https://repository.tudelft.nl/islandora/object/uuid:081e3d0e-173b-4a36-b8d6-c29c70eb7ae3/datastream/OBJ/download
22.
Nikravesh
,
P. E.
,
2007
,
Planar Multibody Dynamics. Formulation, Programming and Applications
, 1st ed.,
CRC Press
,
Boca Raton, FL
.
You do not currently have access to this content.