Abstract

Cylindrical developable mechanisms are devices that conform to and emerge from a cylindrical surface. These mechanisms can be formed or cut from the cylinder wall itself. This paper presents a study on adapting traditional hinge options to achieve revolute motion in these mechanisms. A brief overview of options is given, including classical pin hinges, small-length flexural pivots, initially curved beams, and an adaptation of the membrane thickness-accommodation technique. Curved lamina emergent torsional (LET) joints are then evaluated in detail, and a thin-walled modeling assumption is checked analytically and empirically. A small-scale cylindrical developable mechanism is then evaluated with Nitinol curved LET joints.

References

References
1.
Nelson
,
T. G.
,
Zimmerman
,
T. K.
,
Magleby
,
S. P.
,
Lang
,
R. J.
, and
Howell
,
L. L.
,
2019
, “
Developable Mechanisms on Developable Surfaces
,”
Sci. Rob.
,
4
(
27
), p.
eaau5171
. 10.1126/scirobotics.aau5171
2.
Nelson
,
T. G.
, and
Herder
,
J. L.
,
2018
, “
Developable Compliant-Aided Rolling-Contact Mechanisms
,”
Mech. Mach. Theory
,
126
, pp.
225
242
. 10.1016/j.mechmachtheory.2018.04.013
3.
Jacobsen
,
J. O.
,
Winder
,
B. G.
,
Howell
,
L. L.
, and
Magleby
,
S. P.
,
2010
, “
Lamina Emergent Mechanisms and Their Basic Elements
,”
ASME J. Mech. Rob.
,
2
(
1
), p.
011003
. 10.1115/1.4000523
4.
Greenwood
,
J. R.
,
Magleby
,
S. P.
, and
Howell
,
L. L.
,
2019
, “
Developable Mechanisms on Regular Cylindrical Surfaces
,”
Mech. Mach. Theory.
,
142
, p.
103584
. 10.1016/j.mechmachtheory.2019.103584
5.
Peyron
,
Q.
,
Rabenorosoa
,
K.
,
Andreff
,
N.
, and
Renaud
,
P.
,
2019
, “
A Numerical Framework for the Stability and Cardinality Analysis of Concentric Tube Robots: Introduction and Application to the Follow-the-Leader Deployment
,”
Mech. Mach. Theory.
,
132
, pp.
176
192
. 10.1016/j.mechmachtheory.2018.10.020
6.
Venkiteswaran
,
V. K.
,
Sikorski
,
J.
, and
Misra
,
S.
,
2019
, “
Shape and Contact Force Estimation of Continuum Manipulators Using Pseudo Rigid Body Models
,”
Mech. Mach. Theory.
,
139
, pp.
34
45
. 10.1016/j.mechmachtheory.2019.04.008
7.
Lim
,
J. J.
, and
Erdman
,
A. G.
,
2003
, “
A Review of Mechanism Used in Laparoscopic Surgical Instruments
,”
Mech. Mach. Theory.
,
38
(
11
), pp.
1133
1147
. 10.1016/S0094-114X(03)00063-6
8.
Xue
,
R.
,
Du
,
Z.
,
Yan
,
Z.
, and
Ren
,
B.
,
2019
, “
An Estimation Method of Grasping Force for Laparoscope Surgical Robot Based on the Model of a Cable-Pulley System
,”
Mech. Mach. Theory.
,
134
, pp.
440
454
. 10.1016/j.mechmachtheory.2018.12.032
9.
Chang
,
J.
,
Boules
,
M.
,
Rodriguez
,
J.
, and
Kroh
,
M.
,
2016
, “
Minilaparoscopy With Interchangeable, Full 5-mm End Effectors: First Human Use of a New Minimally Invasive Operating Platform
,”
J. Laparoendosc. Adv. Surg. Tech. Videoscopy
,
26
(
1
), pp.
1
5
. 10.1089/lap.2015.0418
10.
Zoppi
,
M.
,
Sieklicki
,
W.
, and
Molfino
,
R.
,
2008
, “
Design of a Microrobotic Wrist for Needle Laparoscopic Surgery
,”
ASME J. Mech. Des.
,
130
(
10
), p.
102306
. 10.1115/1.2965608
11.
Gafford
,
J.
,
Ding
,
Y.
,
Harris
,
A.
,
McKenna
,
T.
,
Polygerinos
,
P.
,
Holland
,
D.
,
Walsh
,
C.
, and
Moser
,
A.
,
2015
, “
Shape Deposition Manufacturing of a Soft, Atraumatic, and Deployable Surgical Grasper
,”
ASME J. Mech. Rob.
,
7
(
2
), p.
021006
. 10.1115/1.4029493
12.
Howell
,
L. L.
,
2001
,
Compliant Mechanisms
,
John Wiley & Sons
,
New York
.
13.
Seymour
,
K.
,
Sheffield
,
J.
,
Magleby
,
S. P.
, and
Howell
,
L. L.
,
2019
, “
Cylindrical Developable Mechanisms for Minimally Invasive Surgical Instruments
,”
ASME IDETC/CIE International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Anaheim, CA
.
14.
Megaro
,
V.
,
Zehnder
,
J.
,
Bächer
,
M.
,
Coros
,
S.
,
Gross
,
M. H.
, and
Thomaszewski
,
B.
,
2017
, “
A Computational Design Tool for Compliant Mechanisms
,”
ACM Tran. Graphics
,
36
, pp.
82:1
82:12
. 10.1145/3072959.3073636
15.
Su
,
H.
,
2009
, “
A Pseudorigid-Body 3R Model for Determining Large Deflection of Cantilever Beams Subject to Tip Loads
,”
ASME J. Mech. Rob.
,
1
(
2
), p.
021008
. 10.1115/1.3046148
16.
Pedersen
,
C.
,
Buhl
,
T.
, and
Sigmund
,
O.
,
2001
, “
Topology Synthesis of Large-Displacement Compliant Mechanisms
,”
Int. J. Num. Methods Eng.
,
50
(
12
), pp.
2683
2705
. 10.1002/nme.148
17.
Sigmund
,
O.
,
1997
, “
On the Design of Compliant Mechanisms Using Topology Optimization
,”
Mech. Struct. Mach.
,
25
(
4
), pp.
493
524
. 10.1080/08905459708945415
18.
Aten
,
Q. T.
,
Jensen
,
B. D.
,
Tamowski
,
S.
,
Wilson
,
A. M.
,
Howell
,
L. L.
, and
Burnett
,
S. H.
,
2012
, “
Nanoinjection: Pronuclear DNA Delivery Using a Charged Lance
,”
Transgenic. Res.
,
21
(
6
), pp.
1279
1290
. 10.1007/s11248-012-9610-6
19.
Last
,
M.
,
Subramaniam
,
V.
, and
Pister
,
K.
,
2012
, “
Out-of-plane Motion of Assembled Microstructures Using a Singlemask SOI Process
,”
IEEE 13th International Conference on Solid-State Sensors, and Microsystems
,
Seoul, South Korea
, Vol.
2
.
20.
Jacobsen
,
J.
,
Chen
,
G.
,
Howell
,
L.
, and
Magleby
,
S.
,
2012
, “
Lamina Emergent Torsional (LET) Joint
,”
Mech. Mach. Theory.
,
56
, pp.
1
15
. 10.1016/j.mechmachtheory.2012.05.007
21.
Nelson
,
T. G.
,
Lang
,
R. J.
,
Pehrson
,
N. A.
,
Magleby
,
S. P.
, and
Howell
,
L. L.
,
2016
, “
Facilitating Deployable Mechanisms and Structures Via Developable Lamina Emergent Arrays
,”
ASME J. Mech. Rob.
,
8
(
3
), p.
031006
. 10.1115/1.4031901
22.
Pehrson
,
N. A.
,
Bilancia
,
P.
,
Magleby
,
S.
, and
Howell
,
L.
,
2020
, “
Load–Displacement Characterization in Three Degrees-of-Freedom for General Lamina Emergent Torsion Arrays
,”
ASME J. Mech. Des.
,
142
(
9
), p.
093301
. 10.1115/1.4046072
23.
Zimmerman
,
T.
,
Butler
,
J.
,
Frandsen
,
D.
,
Burrow
,
D.
,
Fullwood
,
D.
,
Magleby
,
S.
, and
Howell
,
L.
,
2018
, “
Modified Material Properties in Curved Panels Through Lamina Emergent Torsional Joints
,”
ReMAR International Conference on Reconfigurable Mechanisms and Robots
,
Delft, The Netherlands
, pp.
1
9
.
24.
Hwang
,
I.-H.
,
Shim
,
Y.-S.
, and
Lee
,
J.-H.
,
2003
, “
Modeling and Experimental Characterization of the Chevron-Type Bi-Stable Microactuator
,”
J. Micromech. Microeng.
,
13
(
6
), pp.
948
954
. 10.1088/0960-1317/13/6/318
25.
Ferreira
,
H.
,
2015
, “Equipment in Laparoscopic Surgery,”
A Manual of Minimally Invasive Gynecological Surgery
,
M.
Agarwal
, ed.,
The Health Sciences
,
New Delhi
, pp.
3
12
.
26.
Li
,
L.
,
Zhang
,
D.
,
Guo
,
S.
, and
Qu
,
H.
,
2019
, “
Design, Modeling, and Analysis of Hybrid Flexure Hinges
,”
Mech. Mach. Theory.
,
131
, pp.
300
316
. 10.1016/j.mechmachtheory.2018.10.005
27.
Linß
,
S.
,
Gräser
,
P.
,
Räder
,
T.
,
Henning
,
S.
,
Theska
,
R.
, and
Zentner
,
L.
,
2018
, “
Influence of Geometric Scaling on the Elasto-Kinematic Properties of Flexure Hinges and Compliant Mechanisms
,”
Mech. Mach. Theory.
,
125
, pp.
220
239
. 10.1016/j.mechmachtheory.2018.03.008
28.
Midha
,
A.
, and
Kuber
,
R.
,
2014
, “
Closed-Form Elliptic Integral Solution of Initially-Straight and Initially-Curved Small-Length Flexural Pivots
,”
ASME IDETC/CIE International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Buffalo, NY
.
29.
Howell
,
L. L.
,
Midha
,
A.
, and
Norton
,
T.
,
1996
, “
Evaluation of Equivalent Spring Stiffness for Use in a Pseudo-Rigid-Body Model of Large-Deflection Compliant Mechanisms
,”
ASME J. Mech. Des.
,
118
(
1
), pp.
126
131
. 10.1115/1.2826843
30.
Lang
,
R. J.
,
Tolman
,
K. A.
,
Crampton
,
E. B.
,
Magleby
,
S. P.
, and
Howell
,
L. L.
,
2018
, “
A Review of Thickness-Accommodation Techniques in Origami-Inspired Engineering
,”
ASME Appl. Mech. Rev.
,
70
(
1
), p.
010805
. 10.1115/1.4039314
31.
Zirbel
,
S. A.
,
Lang
,
R. J.
,
Thomson
,
M. W.
,
Sigel
,
D. A.
,
Walkemeyer
,
P. E.
,
Trease
,
B. P.
,
Magleby
,
S. P.
, and
Howell
,
L. L.
,
2013
, “
Accommodating Thickness in Origami-Based Deployable Arrays
,”
ASME J. Mech. Des.
,
135
(
11
), p.
111005
. 10.1115/1.4025372
32.
Chen
,
G.
,
Magleby
,
S. P.
, and
Howell
,
L. L.
,
2018
, “
Membrane-Enhanced Lamina Emergent Torsional Joints for Surrogate Folds
,”
ASME J. Mech. Des.
,
140
(
6
), p.
062303
. 10.1115/1.4039852
33.
Seymour
,
K.
,
Burrow
,
D.
,
Avila
,
A.
,
Bateman
,
T.
,
Morgan
,
D. C.
,
Magleby
,
S. P.
, and
Howell
,
L. L.
,
2018
, “
Origami-Based Deployable Ballistic Barrier
,”
7OSME 7th International Meeting on Origami in Science, Mathematics and Education
,
Oxford, UK
, pp.
763
777
.
34.
Villiers
,
M. D.
,
1994
, “
The Role and Function of a Hierarchical Classification of Quadrilaterals
,”
Learn. Math.
,
14
(
1
), pp.
11
18
.
35.
DeFigueiredo
,
B. P.
,
Zimmerman
,
T. K.
,
Russell
,
B. D.
, and
Howell
,
L. L.
,
2018
, “
Regional Stiffness Reduction Using Lamina Emergent Torsional Joints for Flexible Printed Circuit Board Design
,”
ASME J. Electron. Packag.
,
140
(
4
), p.
041001
. 10.1115/1.4040552
36.
Xie
,
Z.
,
Qiu
,
L.
, and
Yang
,
D.
,
2018
, “
Using the Parts Used to Be Removed to Improve Compliant Joint’s Performance
,”
ASME IDETC/CIE International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Quebec City, Canada
.
37.
Klett
,
Y.
,
2018
, “
PALEO: Plastically Annealed Lamina Emergent Origami
,”
ASME IDETC/CIE International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Quebec City, Canada
.
38.
Alfattani
,
R.
, and
Lusk
,
C.
,
2016
, “
A Lamina-Emergent Frustum Using a Bistable Collapsible Compliant Mechanism (BCCM)
,”
ASME IDETC/CIE International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, Volume 5A: 40th Mechanisms and Robotics Conference
,
Paper No. DETC2016-59590
, p.
V05AT07A014
.
39.
Xie
,
Z.
,
Qiu
,
L.
, and
Yang
,
D.
,
2017
, “
Design and Analysis of Outside-Deployed Lamina Emergent Joint (OD-LEJ)
,”
Mech. Mach. Theory.
,
114
, pp.
111
124
. 10.1016/j.mechmachtheory.2017.03.011
40.
Xie
,
Z.
,
Qiu
,
L.
, and
Yang
,
D.
,
2018
, “
Design and Analysis of a Variable Stiffness Inside-Deployed Lamina Emergent Joint
,”
Mech. Mach. Theory.
,
120
, pp.
166
177
. 10.1016/j.mechmachtheory.2017.09.023
41.
Hyatt
,
L. P.
,
Lytle
,
A.
,
Magleby
,
S. P.
, and
Howell
,
L. L.
,
2020
, “
Designing Developable Mechanisms From Flat Patterns
,”
ASME IDETC/CIE International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
St. Louis, MO (Virtual Event)
.
42.
Jog
,
C.
,
2015
,
Continuum Mechanics: Foundations and Applications of Mechanics
, 3rd ed., Vol.
1
,
Cambridge University Press
,
Cambridge
.
43.
Roark
,
R. J.
, and
Young
,
W. C.
,
1975
,
Formulas for Stress and Strain
,
McGraw-Hill
,
New York
.
44.
McNaney
,
J.
,
Imbeni
,
V.
,
Jung
,
Y.
,
Papadopoulos
,
P.
, and
Ritchie
,
R.
,
2003
, “
An Experimental Study of the Superelastic Effect in a Shape-Memory Nitinol Alloy Under Biaxial Loading
,”
Mech. Mater.
,
35
(
10
), pp.
969
986
. 10.1016/S0167-6636(02)00310-1
45.
Qian
,
H.
,
Li
,
H.
,
Song
,
G.
, and
Guo
,
W.
,
2013
, “
Recentering Shape Memory Alloy Passive Damper for Structural Vibration Control
,”
Math. Prob. Eng.
,
2013
, pp.
1
13
.
You do not currently have access to this content.