Abstract

Recently, soft pneumatic actuators (SPAs) have drawn increasing attention due to their ease of fabrication, high customizability, and intrinsic softness. Inspired by modular design, two kinds of SPAs, including an axial elongation soft pneumatic actuator (aeSPA) and a radial expansion soft pneumatic actuator (reSPA), are proposed in this paper, followed by their modeling, fabrication, and application in locomotion robots. The relationships between pressure and displacement of these SPAs are deduced based on the Yeoh model and the principle of virtual work, which has a good agreement with experimental results. Five modular worm-like crawling robots are fabricated by assembling the aeSPAs and reSPAs in different morphologies, and crawling tests are performed under different conditions to show the adaptivity of robots.

References

1.
Chen
,
S.
,
Pang
,
Y.
,
Yuan
,
H.
,
Tan
,
X.
, and
Cao
,
C.
,
2020
, “
Smart Soft Actuators and Grippers Enabled by Self-powered Tribo-Skins
,”
Adv. Mater. Technol.
,
5
(
4
), p.
1901075
. 10.1002/admt.201901075
2.
Medina
,
H.
, and
Farmer
,
C. W.
,
2020
, “
Improved Model for Conical Dielectric Elastomer Actuators with Fewer Electrical Connections
,”
ASME J. Mech. Rob.
,
12
(
3
), p.
031016
. 10.1115/1.4045651
3.
Zhu
,
M.
,
Do
,
T. N.
,
Hawkes
,
E.
, and
Visell
,
Y.
,
2020
, “
Fluidic Fabric Muscle Sheets for Wearable and Soft Robotics
,”
Soft Rob.
,
7
(
2
), pp.
179
197
. 10.1089/soro.2019.0033
4.
Becker
,
K. P.
,
Chen
,
Y.
, and
Wood
,
R. J.
,
2020
, “
Mechanically Programmable Dip Molding of High Aspect Ratio Soft Actuator Arrays
,”
Adv. Funct. Mater.
,
30
(
12
), p.
1908919
. 10.1002/adfm.201908919
5.
Renda
,
F.
,
Cianchetti
,
M.
,
Abidi
,
H.
,
Dias
,
J.
, and
Seneviratne
,
L.
,
2017
, “
Screw-Based Modeling of Soft Manipulators with Tendon and Fluidic Actuation
,”
ASME J. Mech. Rob.
,
9
(
4
), p.
041012
. 10.1115/1.4036579
6.
Zhang
,
L.
,
Huang
,
Q.
,
Wang
,
W.
, and
Cai
,
K.
,
2020
, “
Design and Characterization of a Soft Vacuum-Actuated Rotary Actuator
,”
ASME J. Mech. Rob.
,
12
(
1
), p.
011008
. 10.1115/1.4044912
7.
Meng
,
L.
,
Kang
,
R.
,
Gan
,
D.
,
Chen
,
G.
,
Chen
,
L.
,
Branson
,
D. T.
, and
Dai
,
J. S.
,
2020
, “
A Mechanically Intelligent Crawling Robot Driven by Shape Memory Alloy and Compliant Bistable Mechanism
,”
ASME J. Mech. Rob.
,
12
(
6
), p.
061005
. 10.1115/1.4046837
8.
Zhang
,
K.
,
Qiu
,
C.
, and
Dai
,
J. S.
,
2015
, “
Helical Kirigami-Enabled Centimeter-Scale Worm Robot With Shape-Memory-Alloy Linear Actuators
,”
ASME J. Mech. Rob.
,
7
(
2
), p.
021014
. 10.1115/1.4029494
9.
Rus
,
D.
, and
Tolley
,
M. T.
,
2015
, “
Design, Fabrication and Control of Soft Robots
,”
Nature
,
521
(
7553
), p.
467
. 10.1038/nature14543
10.
Laschi
,
C.
,
Mazzolai
,
B.
, and
Cianchetti
,
M.
,
2016
, “
Soft Robotics: Technologies and Systems Pushing the Boundaries of Robot Abilities
,”
Sci. Rob.
,
1
(
1
), p.
eaah3690
. 10.1126/scirobotics.aah3690
11.
Polygerinos
,
P.
,
Correll
,
N.
,
Morin
,
S. A.
,
Mosadegh
,
B.
,
Onal
,
C. D.
,
Petersen
,
K.
,
Cianchetti
,
M.
,
Tolley
,
M. T.
, and
Shepherd
,
R. F.
,
2017
, “
Soft Robotics: Review of Fluid-Driven Intrinsically Soft Devices; Manufacturing, Sensing, Control, and Applications in Human-Robot Interaction
,”
Adv. Eng. Mater.
,
19
(
12
), p.
1700016
. 10.1002/adem.201700016
12.
Majidi
,
C.
,
2014
, “
Soft Robotics: a Perspective-Current Trends and Prospects for the Future
,”
Soft Rob.
,
1
(
1
), pp.
5
11
. 10.1089/soro.2013.0001
13.
Wang
,
J.
,
Liu
,
Z.
, and
Fei
,
Y.
,
2019
, “
Design and Testing of a Soft Rehabilitation Glove Integrating Finger and Wrist Function
,”
ASME J. Mech. Rob.
,
11
(
1
), p.
011015
. 10.1115/1.4041789
14.
Miron
,
G.
,
Bédard
,
B.
, and
Plante
,
J.-S.
,
2018
, “
Sleeved Bending Actuators for Soft Grippers: A Durable Solution for High Force-to-Weight Applications
,”
Actuators
,
7
(
3
), p.
40
. 10.3390/act7030040
15.
Wang
,
T.
,
Ge
,
L.
, and
Gu
,
G.
,
2018
, “
Programmable Design of Soft Pneu-Net Actuators Wth Oblique Chambers Can Generate Coupled Bending and Twisting Motions
,”
Sens. Actuators., A.
,
271
(
1
), pp.
131
138
. 10.1016/j.sna.2018.01.018
16.
Wang
,
N.
,
Cui
,
C.
,
Guo
,
H.
,
Chen
,
B.
, and
Zhang
,
X.
,
2018
, “
Advances in Dielectric Elastomer Actuation Technology
,”
Sci. China Technol. Sci.
,
61
(
10
), pp.
1512
1527
. 10.1007/s11431-017-9140-0
17.
Abidi
,
H.
,
Gerboni
,
G.
,
Brancadoro
,
M.
,
Fras
,
J.
,
Diodato
,
A.
,
Cianchetti
,
M.
,
Wurdemann
,
H.
,
Althoefer
,
K.
, and
Menciassi
,
A.
,
2018
, “
Highly Dexterous 2-Module Soft Robot for Intra-Organ Navigation in Minimally Invasive Surgery
,”
Int. J. Med. Rob. Comput. Assisted Surgery
,
14
(
1
), p.
e1875
. 10.1002/rcs.1875
18.
Ranzani
,
T.
,
Gerboni
,
G.
,
Cianchetti
,
M.
, and
Menciassi
,
A.
,
2015
, “
A Bioinspired Soft Manipulator for Minimally Invasive Surgery
,”
Bioinsp. Biomim.
,
10
(
3
), p.
035008
. 10.1088/1748-3190/10/3/035008
19.
Wang
,
N.
,
Cui
,
C.
,
Chen
,
B.
,
Guo
,
H.
, and
Zhang
,
X.
,
2019
, “
Design of Translational and Rotational Bistable Actuators Based on Dielectric Elastomer
,”
ASME J. Mech. Rob.
,
11
(
4
), p.
041011
. 10.1115/1.4043602
20.
Polygerinos
,
P.
,
Wang
,
Z.
,
Galloway
,
K. C.
,
Wood
,
R. J.
, and
Walsh
,
C. J.
,
2015
, “
Soft Robotic Glove for Combined Assistance and At-Home Rehabilitation
,”
Rob. Auto. Syst.
,
73
(
1
), pp.
135
143
. 10.1016/j.robot.2014.08.014
21.
Liang
,
X.
,
Cheong
,
H.
,
Chui
,
C. K.
, and
Yeow
,
C.-H.
,
2019
, “
A Fabric-Based Wearable Soft Robotic Limb
,”
J. Mech. Rob.-Trans. Asme
,
11
(
3
), p.
031003
. 10.1115/1.4043024
22.
Barreiros
,
J.
,
Claure
,
H.
,
Peele
,
B.
,
Shapira
,
O.
,
Spjut
,
J.
,
Luebke
,
D.
,
Jung
,
M.
, and
Shepherd
,
R.
,
2019
, “
Fluidic Elastomer Actuators for Haptic Interactions in Virtual Reality
,”
IEEE Rob. Auto. Lett.
,
4
(
2
), pp.
277
284
. 10.1109/LRA.2018.2888628
23.
Šitum
,
Ž.
, and
Trslić
,
P.
,
2018
, “
Ball and Beam Balancing Mechanism Actuated With Pneumatic Artificial Muscles
,”
ASME J. Mech. Rob.
,
10
(
5
), p.
055001
. 10.1115/1.4040490
24.
Fras
,
J.
,
Noh
,
Y.
,
Macias
,
M.
,
Wurdemann
,
H.
, and
Althoefer
,
K.
,
2018
, “
Bio-Inspired Octopus Robot Based on Novel Soft Fluidic Actuator
,”
IEEE International Conference on Robotics and Automation (ICRA)
,
Brisbane, QLD, Australia
,
May 21–25
, Silver Spring, MD, pp.
1583
1588
.
25.
Lee
,
J.-Y.
,
Kim
,
W.-B.
,
Choi
,
W.-Y.
, and
Cho
,
K.-J.
,
2016
, “
Soft Robotic Blocks: Introducing Sobl, a Fast-Build Modularized Design Block
,”
IEEE Rob. Auto. Magaz.
,
23
(
3
), pp.
30
41
. 10.1109/MRA.2016.2580479
26.
Connolly
,
F.
,
Polygerinos
,
P.
,
Walsh
,
C. J.
, and
Bertoldi
,
K.
,
2015
, “
Mechanical Programming of Soft Actuators by Varying Fiber Angle
,”
Soft Rob.
,
2
(
1
), pp.
26
32
. 10.1089/soro.2015.0001
27.
Polygerinos
,
P.
,
Wang
,
Z.
,
Overvelde
,
J. T.
,
Galloway
,
K. C.
,
Wood
,
R. J.
,
Bertoldi
,
K.
, and
Walsh
,
C. J.
,
2015
, “
Modeling of Soft Fiber-Reinforced Bending Actuators
,”
IEEE Trans. Rob.
,
31
(
3
), pp.
778
789
. 10.1109/TRO.2015.2428504
28.
Sun
,
Y.
,
Song
,
Y. S.
, and
Paik
,
J.
,
2013
, “
Characterization of Silicone Rubber Based Soft Pneumatic Actuators
,”
IEEE/RSJ International Conference on Intelligent Robots and Systems
,
Tokyo, Japan
,
Nov. 3–7
, IEEE, Silver Spring, MD, pp.
4446
4453
.
29.
Wang
,
N.
,
Ge
,
X.
,
Guo
,
H.
,
Cui
,
C.
, and
Zhang
,
X.
,
2017
, “
A Kind of Soft Pneumatic Actuator Based on Multi-material 3d Print Technology
,”
IEEE International Conference on Robotics and Biomimetics (ROBIO)
,
Macau, China
,
Dec. 5–8
, IEEE, Silver Spring, MD, pp.
823
827
.
30.
Connolly
,
F.
,
Walsh
,
C. J.
, and
Bertoldi
,
K.
,
2017
, “
Automatic Design of Fiber-Reinforced Soft Actuators for Trajectory Matching
,”
Proc. Natl. Acad. Sci. U.S.A.
,
114
(
1
), pp.
51
56
. 10.1073/pnas.1615140114
31.
Martinez
,
R. V.
,
Branch
,
J. L.
,
Fish
,
C. R.
,
Jin
,
L.
,
Shepherd
,
R. F.
,
Nunes
,
R. M.
,
Suo
,
Z.
, and
Whitesides
,
G. M.
,
2013
, “
Robotic Tentacles With Three-Dimensional Mobility Based on Flexible Elastomers
,”
Adv. Mater.
,
25
(
2
), pp.
205
212
. 10.1002/adma.201203002
32.
Mosadegh
,
B.
,
Polygerinos
,
P.
,
Keplinger
,
C.
,
Wennstedt
,
S.
,
Shepherd
,
R. F.
,
Gupta
,
U.
,
Shim
,
J.
,
Bertoldi
,
K.
,
Walsh
,
C. J.
, and
Whitesides
,
G. M.
,
2014
, “
Pneumatic Networks for Soft Robotics That Actuate Rapidly
,”
Adv. Funct. Mater.
,
24
(
15
), pp.
2163
2170
. 10.1002/adfm.201303288
33.
Futran
,
C. C.
,
Ceron
,
S.
,
Mac Murray
,
B. C.
,
Shepherd
,
R. F.
, and
Petersen
,
K. H.
,
2018
, “
Leveraging Fluid Resistance in Soft Robots
,”
IEEE International Conference on Soft Robotics (RoboSoft)
,
Livorno, Italy
,
Apr. 24–28
, IEEE, Silver Spring, MD, pp.
473
478
.
34.
Ainla
,
A.
,
Verma
,
M. S.
,
Yang
,
D.
, and
Whitesides
,
G. M.
,
2017
, “
Soft, Rotating Pneumatic Actuator
,”
Soft Rob.
,
4
(
3
), pp.
297
304
. 10.1089/soro.2017.0017
35.
Koizumi
,
Y.
,
Shibata
,
M.
, and
Hirai
,
S.
,
2012
, “
Rolling Tensegrity Driven by Pneumatic Soft Actuators
,”
IEEE International Conference on Robotics and Automation
,
Saint Paul, MN
,
May 14–18
, IEEE, Silver Spring, MD, pp.
1988
1993
.
36.
Onal
,
C. D.
, and
Rus
,
D.
,
2012
, “
A Modular Approach to Soft Robots
,”
4th IEEE RAS & EMBS International Conference on Biomedical Robotics and Biomechatronics (BioRob)
,
Rome, Italy
,
June 24–27
, IEEE, Silver Spring, MD, pp.
1038
1045
.
37.
Homberg
,
B. S.
,
Katzschmann
,
R. K.
,
Dogar
,
M. R.
, and
Rus
,
D.
,
2015
, “
Haptic Identification of Objects Using a Modular Soft Robotic Gripper
,”
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
,
Hamburg, Germany
,
Sept. 28–Oct. 2
, IEEE, Silver Spring, MD, pp.
1698
1705
.
38.
Du Pasquier
,
C.
,
Chen
,
T.
,
Tibbits
,
S.
, and
Shea
,
K.
,
2019
, “
Design and Computational Modeling of a 3d Printed Pneumatic Toolkit for Soft Robotics
,”
Soft Rob.
,
6
(
5
), pp.
657
663
. 10.1089/soro.2018.0095
39.
Zhang
,
Y.
,
Liu
,
Y.
,
Sui
,
X.
,
Zheng
,
T.
,
Bie
,
D.
,
Wang
,
Y.
,
Zhao
,
J.
, and
Zhu
,
Y.
,
2019
, “
A Mechatronics-Embedded Pneumatic Soft Modular Robot Powered Via Single Air Tube
,”
Appl. Sci.
,
9
(
11
), p.
2260
. 10.3390/app9112260
40.
Moseley
,
P.
,
Florez
,
J. M.
,
Sonar
,
H. A.
,
Agarwal
,
G.
,
Curtin
,
W.
, and
Paik
,
J.
,
2016
, “
Modeling, Design, and Development of Soft Pneumatic Actuators With Finite Element Method
,”
Adv. Eng. Mater.
,
18
(
6
), pp.
978
988
. 10.1002/adem.201500503
41.
Wang
,
N.
,
Guo
,
H.
,
Chen
,
B.
,
Cui
,
C.
, and
Zhang
,
X.
,
2019
, “
Integrated Design of Actuation and Mechanism of Dielectric Elastomers Using Topology Optimization Based on Fat Bezier Curves.
,”
Soft Rob.
,
6
(
5
), pp.
644
656
. 10.1089/soro.2018.0114
42.
Wang
,
N.
,
Guo
,
H.
,
Chen
,
B.
,
Cui
,
C.
, and
Zhang
,
X.
,
2018
, “
Design of a Rotary Dielectric Elastomer Actuator Using a Topology Optimization Method Based on Pairs of Curves
,”
Smart Mater. Struct.
,
27
(
5
), p.
055011
. 10.1088/1361-665X/aab991
43.
Singh
,
G.
, and
Krishnan
,
G.
,
2015
, “
An Isoperimetric Formulation to Predict Deformation Behavior of Pneumatic Fiber Reinforced Elastomeric Actuators
,”
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
,
Hamburg, Germany
,
Sept. 28–Oct. 2
, IEEE, Silver Spring, MD, pp.
1738
1743
.
44.
Bishop-Moser
,
J.
, and
Kota
,
S.
,
2015
, “
Design and Modeling of Generalized Fiber-Reinforced Pneumatic Soft Actuators
,”
IEEE Trans. Rob.
,
31
(
3
), pp.
536
545
. 10.1109/TRO.2015.2409452
45.
Satheeshbabu
,
S.
, and
Krishnan
,
G.
,
2019
, “
Modeling the Bending Behavior of Fiber-Reinforced Pneumatic Actuators Using a Pseudo-Rigid-Body Model
,”
ASME J. Mech. Rob.
,
11
(
3
), p.
031011
. 10.1115/1.4042632
46.
Marchese
,
A. D.
,
Tedrake
,
R.
, and
Rus
,
D.
,
2016
, “
Dynamics and Trajectory Optimization for a Soft Spatial Fluidic Elastomer Manipulator
,”
Int. J. Rob. Res.
,
35
(
8
), pp.
1000
1019
. 10.1177/0278364915587926
47.
Wang
,
T.
,
Zhang
,
Y.
,
Zhu
,
Y.
, and
Zhu
,
S.
,
2019
, “
A Computationally Efficient Dynamical Model of Fluidic Soft Actuators and Its Experimental Verification
,”
Mechatronics
,
58
(
1
), pp.
1
8
. 10.1016/j.mechatronics.2018.11.012
48.
Barforooshi
,
S. D.
, and
Mohammadi
,
A. K.
,
2016
, “
Study Neo-hookean and Yeoh Hyper-Elastic Models in Dielectric Elastomer-Based Micro-Beam Resonators
,”
Latin Am. J. Solids Struct.
,
13
(
10
), pp.
1823
1837
. 10.1590/1679-78252432
49.
Yeoh
,
O. H.
,
1993
, “
Some Forms of the Strain Energy Function for Rubber
,”
Rubber. Chem. Technol.
,
66
(
5
), pp.
754
771
. 10.5254/1.3538343
50.
Ogden
,
R.
,
1973
, “
Large Deformation Isotropic Elasticity on the Correlation of Theory and Experiment for Incompressible Rubberlike Solids
,”
Rubber. Chem. Technol.
,
46
(
2
), pp.
398
416
. 10.5254/1.3542910
51.
Zhu
,
J.
,
Cai
,
S.
, and
Suo
,
Z.
,
2010
, “
Resonant Behavior of a Membrane of a Dielectric Elastomer
,”
Int. J. Solids. Struct.
,
47
(
24
), pp.
3254
3262
. 10.1016/j.ijsolstr.2010.08.008
52.
Overvelde
,
J. T. B.
,
Kloek
,
T.
,
Dhaen
,
J. J. A.
, and
Bertoldi
,
K.
,
2015
, “
Amplifying the Response of Soft Actuators by Harnessing Snap-through Instabilities
,”
Proc. Natl. Acad. Sci. U.S.A.
,
112
(
35
), pp.
10863
10868
. 10.1073/pnas.1504947112
53.
Keplinger
,
C.
,
Li
,
T.
,
Baumgartner
,
R.
,
Suo
,
Z.
, and
Bauer
,
S.
,
2012
, “
Harnessing Snap-Through Instability in Soft Dielectrics to Achieve Giant Voltage-triggered Deformation
,”
Soft. Matter.
,
8
(
2
), pp.
285
288
. 10.1039/C1SM06736B
54.
Hu
,
N.
, and
Burgueno
,
R.
,
2015
, “
Buckling-Induced Smart Applications: Recent Advances and Trends
,”
Smart Mater. Struct.
,
24
(
6
), p.
063001
. 10.1088/0964-1726/24/6/063001
55.
Zhao
,
X.
, and
Suo
,
Z.
,
2010
, “
Theory of Dielectric Elastomers Capable of Giant Deformation of Actuation
,”
Phys. Rev. Lett.
,
104
(
17
), p.
178302
. 10.1103/PhysRevLett.104.178302
56.
Li
,
T.
,
Keplinger
,
C.
,
Baumgartner
,
R.
,
Bauer
,
S.
,
Yang
,
W.
, and
Suo
,
Z.
,
2013
, “
Giant Voltage-Induced Deformation in Dielectric Elastomers Near the Verge of Snap-through Instability
,”
J. Mech. Phys. Solids.
,
61
(
2
), pp.
611
628
. 10.1016/j.jmps.2012.09.006
57.
Ge
,
L.
,
Wang
,
T.
,
Zhang
,
N.
, and
Gu
,
G.
,
2018
, “
Fabrication of Soft Pneumatic Network Actuators With Oblique Chambers
,”
JoVE (J. Visualized Exp.)
,
138
(
1
), p.
e58277
.
58.
Ding
,
L.
,
Dai
,
N.
,
Mu
,
X.
,
Xie
,
S.
,
Fan
,
X.
,
Li
,
D.
, and
Cheng
,
X.
,
2019
, “
Design of Soft Multi-Material Pneumatic Actuators Based on Principal Strain Field
,”
Mater. Des.
,
182
(
1
), p.
108000
. 10.1016/j.matdes.2019.108000
59.
Yang
,
H.
,
Chen
,
Y.
,
Sun
,
Y.
, and
Hao
,
L.
,
2017
, “
A Novel Pneumatic Soft sensor for Measuring Contact Force and Curvature of a Soft Gripper
,”
Sens. Actuators., A.
,
266
, pp.
318
327
. 10.1016/j.sna.2017.09.040
You do not currently have access to this content.