Abstract

Over the past few years, the concept of multi-directional three-dimensional (3D) printing has been introduced to print complex shapes and overhang geometry. This technique requires the nozzle to constantly change orientation to print the object along its tangential direction. A six-degrees-of-freedom (6-DOF) robotic arm or Stewart platform can be a solution, but these mechanisms use more components and motors. An alternative solution has been proposed in this paper based on a four-CRU (cylindrical, revolute, and universal joints) mechanism. This mechanism can orient the nozzle by switching into different motion types with minimal numbers of motors while keeping the mechanism rigid and agile. Therefore, analyses of the reconfiguration, workspace, singularities, and self-motions of a four-CRU mechanism presented in this paper have become necessities. By using primary decomposition, four geometric constraints have been identified, and the reconfiguration analysis has been carried out in each of these. It reveals that each geometric constraint will have three distinct operation modes, namely Schönflies mode, reversed Schönflies mode, and an additional mode. The additional mode can either be a four-DOF mode or a degenerated three-DOF mode, depending on the type of geometric constraints. By taking into account the actuation and constraint singularities, the workspace of each operation mode has been analyzed and geometrically illustrated. It allows us to determine the regions in which the reconfiguration takes place. Furthermore, the inherent self-motion in the Schönflies mode is revealed and illustrated, which occurs at two specified actuated leg lengths. Demonstration of the reconfiguration process and self-motions is provided through a mock-up prototype.

References

1.
Wohlhart
,
K.
,
1996
, “Kinematotropic Linkages,”
Advances in Robot Kinematics
,
V.
Parenti-Castelli
, and
J.
Lenarcic
, eds.,
Kluwer
,
Dordrecht
, pp.
359
368
.
2.
Kong
,
X.
,
2018
, “
A Variable-DOF Single-Loop 7R Spatial Mechanism With Five Motion Modes
,”
Mech. Mach. Theory.
,
120
(
2
), pp.
239
249
. 10.1016/j.mechmachtheory.2017.10.005
3.
Gan
,
D. M.
,
Dai
,
J. S.
,
Dias
,
J.
, and
Seneviratne
,
L. D.
,
2016
, “
Variable Motion/Force Transmissibility of a Metamorphic Parallel Mechanism With Reconfigurable 3T and 3R Motion
,”
ASME. J. Mech. Rob.
,
8
(
5
), p.
051001
. 10.1115/1.4032409
4.
Gan
,
D. M.
,
Dias
,
J.
, and
Seneviratne
,
L.
,
2016
, “
Unified Kinematics and Optimal Design of a 3-rRPS Metamorphic Parallel Mechanism with Reconfigurable Joint
,”
Mech. Mach. Theory.
,
96
(
2
), pp.
239
254
. 10.1016/j.mechmachtheory.2015.08.005
5.
Xu
,
K.
,
Li
,
L.
,
Bai
,
S.
,
Yang
,
Q.
, and
Ding
,
X.
,
2017
, “
Design and Analysis of a Metamorphic Mechanism Cell for Multistage Orderly Deployable/Retractable Mechanism
,”
Mech. Mach. Theory.
,
111
(
5
), pp.
85
98
. 10.1016/j.mechmachtheory.2017.01.016
6.
Xiu
,
H.
,
Wang
,
K.
,
Xu
,
T.
,
Wei
,
G.
, and
Ren
,
L.
,
2019
, “
Synthesis and Analysis of Fulleroid-like Deployable Archimedean Mechanisms based on an Overconstrained Eight-bar Linkage
,”
Mech. Mach. Theory.
,
137
(
7
), pp.
476
508
. 10.1016/j.mechmachtheory.2019.03.004
7.
Wei
,
G.
,
Chen
,
Y.
, and
Dai
,
J. S.
,
2014
, “
Synthesis, Mobility, and Multifurcation of Deployable Polyhedral Mechanisms With Radially Reciprocating Motion
,”
ASME. J. Mech. Des.
,
136
(
9
), p.
091003
. 10.1115/1.4027638
8.
Wei
,
G.
, and
Dai
,
J. S.
,
2014
, “
A Spatial Eight-Bar Linkage and Its Association with the Deployable Platonic Mechanisms
,”
ASME. J. Mech. Rob.
,
6
(
2
), p.
021010
.10.1115/1.4025472
9.
Carbonari
,
L.
,
Callegari
,
M.
,
Palmieri
,
G.
, and
Palpacelli
,
M.-C.
,
2014
, “
A New Class of Reconfigurable Parallel Kinematic Machines
,”
Mech. Mach. Theory.
,
79
(
9
), pp.
173
183
. 10.1016/j.mechmachtheory.2014.04.011
10.
Gallardo-Alvarado
,
J.
and
Rodriguez-Castro
,
R.
,
2018
, “
A New Parallel Manipulator with Multiple Operation Modes
,”
ASME J. Mech. Robot.
,
10
(
5
), p.
051012
.10.1115/1.4040702
11.
Zlatanov
,
D.
,
Bonev
,
I.
, and
Gosselin
,
C.
,
2002
, “Constraint Singularities As C-space Singularities,”
Advances in Robot Kinematics
,
F.
Thomas
, and
J.
Lenarcic
, eds.,
Springer
,
Dordrecht
, pp.
183
192
.
12.
Kong
,
X.
,
2016
, “
Reconfiguration Analysis of a 4-DOF 3-RER Parallel Manipulator with Equilateral Triangular Base and Moving-Platform
,”
Mech. Mach. Theory.
,
98
(
4
), pp.
180
189
. 10.1016/j.mechmachtheory.2015.12.007
13.
Kong
,
X.
,
2014
, “
Reconfiguration Analysis of a 3-DOF Parallel Mechanism Using Euler Parameter Quaternions and Algebraic Geometry Method
,”
Mech. Mach. Theory.
,
74
(
4
), pp.
188
201
. 10.1016/j.mechmachtheory.2013.12.010
14.
Nurahmi
,
L.
,
Caro
,
S.
,
Wenger
,
P.
,
Schadlbauer
,
J.
, and
Husty
,
M.
,
2016
, “
Reconfiguration Analysis of A 4-RUU Parallel Manipulator
,”
Mech. Mach. Theory.
,
96
(
2
), pp.
269
289
. 10.1016/j.mechmachtheory.2015.09.004
15.
Nurahmi
,
L.
,
Caro
,
S.
, and
Wenger
,
P.
,
2015
, “Operation Modes and Self-Motions of a 2-RUU Parallel Manipulator,”
Recent Advances in Mechanism Design for Robotics, Mechanisms and Machine Science
, Vol.
33
,
S
Bai
, and
M
Ceccarelli
, eds.,
Springer
,
Cham
, pp.
417
426
.
16.
Nurahmi
,
L.
, and
Gan
,
D.
,
2020
, “
Reconfiguration of a 3-(rR)PS Metamorphic Parallel Mechanism Based on Complete Workspace and Operation Mode Analysis
,”
ASME J. Mech. Rob.
,
12
(
1
), p.
011002
. 10.1115/1.4044844
17.
Nurahmi
,
L.
,
Husty
,
M.
, and
Gan
,
D.
,
2020
, “Forward Kinematics and Singularities of a 3-(rR)PS Metamorphic Parallel Mechanism,”
Mechanisms and Machine Science
, Vol.
83
,
P.
Larochelle
, and
J.
McCarthy
, eds.,
Springer
,
Cham
, pp.
68
77
.
18.
Nurahmi
,
L.
,
Caro
,
S.
, and
Solichin
,
M.
,
2019
, “
A Novel Ankle Rehabilitation Device Based on a Reconfigurable 3-RPS Parallel Manipulator
,”
Mech. Mach. Theory.
,
134
(
4
), pp.
135
150
. 10.1016/j.mechmachtheory.2018.12.017
19.
Zhang
,
H.
, and
Agrawal
,
S. K.
,
2017
, “
Kinematic Design of a Dynamic Brace for Measurement of Head/Neck Motion
,”
IEEE Rob. Automation Lett.
,
2
(
3
), pp.
1428
1435
. 10.1109/LRA.2017.2671409
20.
Zhang
,
H.
,
Albee
,
K.
, and
Agrawal
,
S. K.
,
2018
, “
A Spring-loaded Compliant Neck Brace with Adjustable Supports
,”
Mech. Mach. Theory.
,
125
(
7
), pp.
34
44
. 10.1016/j.mechmachtheory.2017.12.025
21.
Murray
,
R. C.
, and
Ophaswongse S. K. Agrawal
,
C.
,
2019
, “
Design of a Wheelchair Robot for Active Postural Support
,”
ASME. J. Mech. Rob.
,
11
(
2
), p.
020911
. 10.1115/1.4042544
22.
Coste
,
M.
, and
Demdah
,
K. M.
,
2015
, “
Extra Modes of Operation and Self-motions in Manipulators Designed for Schoenfies Motion
,”
ASME J. Mech. Rob.
,
7
(
4
), p.
041020
.10.1115/1.4029501
23.
Chablat
,
D.
,
Kong
,
X.
, and
Zhang
,
C.
,
2017
, “
Kinematics, Workspace and Singularity Analysis of a Multi-Mode Parallel Robot
,”
Journal of Mechanism and Robotics, Proceedings of the ASME 2017 International Design Engineering Technical Conferences & Computers and Information in Engineering Conference IDETC/CIE 2017
,
Cleveland, OH, Aug. 6–9, USA
24.
Kong
,
X.
, and
Jin
,
Y.
,
2016
, “
Type Synthesis of 3-DOF Multi-mode Translational/spherical Parallel Mechanisms with Lockable Joints
,”
Mech. Mach. Theory.
,
96
(
2
), pp.
323
333
. 10.1016/j.mechmachtheory.2015.04.019
25.
Kong
,
X.
,
2013
, “
Type Synthesis of 3-DOF Parallel Manipulators with Both a Planar Operation Mode and a Spatial Translational Operation Mode
,”
ASME J. Mech. Rob.
,
5
(
4
), p.
041015
. 10.1115/1.4025219
26.
Schadlbauer
,
J.
,
Husty
,
M.
,
Caro
,
S.
, and
Wenger
,
P.
,
2013
, “
Self-Motions of 3-RPS Manipulators
,”
Front. Mech. Eng.
,
8
(
10
), pp.
62
69
. 10.1007/s11465-013-0366-3
27.
Chablat
,
D.
,
Ottaviano
,
E.
, and
Venkateswaran
,
S.
,
2019
, “
Self-Motions Conditions for a 3-PPPS Parallel Robot with Delta-shaped Base
,”
Mech. Mach. Theory.
,
135
(
5
), pp.
109
114
. 10.1016/j.mechmachtheory.2019.02.006
28.
Khoshnevis
,
B.
,
2004
, “
Automated Construction by Contour Crafting - Related Robotics and Information Technologies
,”
Auto. Construct.
,
13
(
1
), pp.
5
19
. 10.1016/j.autcon.2003.08.012
29.
Cesaretti
,
G.
,
Dini
,
E.
,
De Kestelier
,
X.
,
Colla
,
V.
, and
Pambaguian
,
L.
,
2014
, “
Building Components for An Outpost on The Lunar Soil by Means of A Novel 3D-Printing Technology
,”
Acta Astronaut.
,
93
(
1
), pp.
430
450
. 10.1016/j.actaastro.2013.07.034
30.
Krejcirik
,
P.
,
Skaroupka
,
D.
, and
Palousek
,
D.
,
2018
, “
Free Directional Robotic Deposition-Influence of Overhang Printability
,”
Modern Mach. Sci. J.
,
12
(
5
), pp.
2715
2721
.
31.
Song
,
X.
,
Pan
,
Y.
, and
Chen
,
Y.
,
2015
, “
Development of a Low-Cost Parallel Kinematic Machine for Multi-directional Additive Manufacturing
,”
ASME J. Mech. Rob.
,
137
(
2
), p.
021005
.10.1115/1.4028897
32.
Gao
,
Y.
,
Wu
,
L.
,
Yan
,
D-M.
, and
Nan
,
L.
,
2019
, “
Near Support-free Multi-directional 3D Printing Via Global-Optimal Decomposition
,”
Graphical Models
,
104
(
1
), p.
101034
. 10.1016/j.gmod.2019.101034
You do not currently have access to this content.