Abstract

This article aims to address some of the current limitations of cable-driven parallel robots (CDPRs) by enabling regional changes in dynamic structure through collisions between cables and fixed objects placed in the work area (such as idler pulleys). This leads to the definition of a new class of robots referred to as variable structure cable-driven parallel robots (VSCRs). One of the major advancements from VSCRs is their ability to cover nonconvex reachable workspaces: a significant relaxation on the constraints of traditional CDPRs that is especially useful for circumventing obstacles and has implications for a wide range of applications. Specific examples of vertical farming and rehabilitation are demonstrated experimentally. It is shown that VSCRs can dramatically improve the reachability and accessible workspace of traditional CDPRs. In addition, an online method for solving the planar VSCR inverse kinematics problem is introduced, which is based on an extended cable model. The method is general and has been validated through experimental studies.

References

References
1.
Dekker
,
R.
,
Khajepour
,
A.
, and
Behzadipour
,
S.
,
2006
, “
Design and Testing of an Ultra-High-Speed Cable Robot
,”
Int. J. Rob. Auto.
,
21
(
1
), pp.
25
34
.
2.
Nan
,
R.
,
Li
,
D.
,
Jin
,
C.
,
Wang
,
Q.
,
Zhu
,
L.
,
Zhu
,
W.
,
Zhang
,
H.
,
Yue
,
Y.
, and
Qian
,
L.
,
2011
, “
The Five-Hundred-Meter Aperture Spherical Radio Telescope (Fast) Project
,”
Int. J. Modern Phys. D
,
20
(
6
), pp.
989
1024
. 10.1142/S0218271811019335
3.
Rushton
,
M.
,
Jamshidifar
,
H.
, and
Khajepour
,
A.
,
2019
, “
Multiaxis Reaction System (Mars) for Vibration Control of Planar Cable-Driven Parallel Robots
,”
IEEE Trans. Rob.
,
35
(
4
), pp.
1039
1046
. 10.1109/tro.2019.2906475
4.
Behzadipour
,
S.
, and
Khajepour
,
A.
,
2006
, “
Stiffness of Cable-Based Parallel Manipulators With Application to Stability Analysis
,”
ASME J. Mech. Des.
,
128
(
1
), pp.
303
310
. 10.1115/1.2114890
5.
Gouttefarde
,
M.
, and
Gosselin
,
C.
,
2006
, “
Analysis of the Wrench-Closure Workspace of Planar Parallel Cable-Driven Mechanisms
,”
IEEE Trans. Rob.
,
22
(
3
), pp.
434
445
. 10.1109/TRO.2006.870638
6.
Gouttefarde
,
M.
,
Daney
,
D.
, and
Merlet
,
J.-P.
,
2011
, “
Interval-Analysis-Based Determination of the Wrench-Feasible Workspace of Parallel Cable-Driven Robots
,”
IEEE Trans. Rob.
,
27
(
1
), pp.
1
13
.
Conference Name: IEEE Transactions on Robotics
. 10.1109/TRO.2010.2090064
7.
Perreault
,
S.
,
Cardou
,
P.
,
Gosselin
,
C. M.
, and
Otis
,
M. J.-D.
,
2010
, “
Geometric Determination of the Interference-Free Constant-Orientation Workspace of Parallel Cable-Driven Mechanisms
,”
ASME J. Mech. Rob.
,
2
(
3
), p.
031016
. 10.1115/1.4001780
8.
Gagliardini
,
L.
,
Caro
,
S.
,
Gouttefarde
,
M.
, and
Girin
,
A.
,
2016
, “
Discrete Reconfiguration Planning for Cable-Driven Parallel Robots
,”
Mech. Mach. Theory.
,
100
, pp.
313
337
. 10.1016/j.mechmachtheory.2016.02.014
9.
Abdolshah
,
S.
,
Zanotto
,
D.
,
Rosati
,
G.
, and
Agrawal
,
S. K.
,
2017
, “
Optimizing Stiffness and Dexterity of Planar Adaptive Cable-Driven Parallel Robots
,”
ASME J. Mech. Rob.
,
9
(
3
), p.
031004
. 10.1115/1.4035681
10.
Anson
,
M.
,
Alamdari
,
A.
, and
Krovi
,
V.
,
2017
, “
Orientation Workspace and Stiffness Optimization of Cable-Driven Parallel Manipulators With Base Mobility
,”
ASME J. Mech. Rob.
,
9
(
3
), p.
031011
. 10.1115/1.4035988
11.
Cuvillon
,
L.
,
Weber
,
X.
, and
Gangloff
,
J.
,
2020
, “
Modal Control for Active Vibration Damping of Cable-Driven Parallel Robots
,”
ASME J. Mech. Rob.
,
12
(
5
), p.
051004
. 10.1115/1.4046434
12.
Wang
,
B.
,
Zi
,
B.
,
Qian
,
S.
, and
Zhang
,
D.
,
2016
, “
Collision Free Force Closure Workspace Determination of Reconfigurable Planar Cable Driven Parallel Robot
,”
2016 Asia-Pacific Conference on Intelligent Robot Systems (ACIRS)
,
Tokyo, Japan
,
July 20–22
, IEEE, pp.
26
30
.
13.
Fabritius
,
M.
,
Martin
,
C.
, and
Pott
,
A.
,
2019
, “
Calculation of the Cable-Platform Collision-Free Total Orientation Workspace of Cable-Driven Parallel Robots
,”
International Conference on Cable-Driven Parallel Robots
,
Krakow, Poland
,
June 30–July 4
, Springer, pp.
137
148
.
14.
Lahouar
,
S.
,
Ottaviano
,
E.
,
Zeghoul
,
S.
,
Romdhane
,
L.
, and
Ceccarelli
,
M.
,
2009
, “
Collision Free Path-Planning for Cable-Driven Parallel Robots
,”
Rob. Auto. Syst.
,
57
(
11
), pp.
1083
1093
. 10.1016/j.robot.2009.07.006
15.
Bak
,
J.-H.
,
Hwang
,
S. W.
,
Yoon
,
J.
,
Park
,
J. H.
, and
Park
,
J.-O.
,
2019
, “
Collision-Free Path Planning of Cable-Driven Parallel Robots in Cluttered Environments
,”
Intel. Service Rob.
,
12
, pp.
1
11
. 10.1007/s11370-018-0267-8
16.
Wischnitzer
,
Y.
,
Shvalb
,
N.
, and
Shoham
,
M.
,
2008
, “
Wire-Driven Parallel Robot: Permitting Collisions Between Wires
,”
Int. J. Rob. Res.
,
27
(
9
), pp.
1007
1026
. 10.1177/0278364908095884
17.
Otis
,
M. J. -D.
,
Perreault
,
S.
,
Nguyen-Dang
,
T. -L.
,
Lambert
,
P.
,
Gouttefarde
,
M.
,
Laurendeau
,
D.
, and
Gosselin
,
C.
,
2009
, “
Determination and Management of Cable Interferences Between Two 6-dof Foot Platforms in a Cable-Driven Locomotion Interface
,”
IEEE Trans. Syst., Man, Cyber. Part A: Syst. Humans
,
39
(
3
), pp.
528
544
. 10.1109/TSMCA.2009.2013188
18.
Tang
,
L.
,
Tang
,
X.
,
Jiang
,
X.
, and
Gosselin
,
C.
,
2015
, “
Dynamic Trajectory Planning Study of Planar Two-dof Redundantly Actuated Cable-Suspended Parallel Robots
,”
Mechatronics
,
30
, pp.
187
197
. 10.1016/j.mechatronics.2015.07.005
19.
Wang
,
X.
, and
Bhattacharya
,
S.
,
2018
, “
A Topological Approach to Workspace and Motion Planning for a Cable-Controlled Robot in Cluttered Environments
,”
IEEE Rob. Auto. Lett.
,
3
(
3
), pp.
2600
2607
. 10.1109/LRA.2018.2817684
20.
Bruckmann
,
T.
,
Mattern
,
H.
,
Spengler
,
A.
,
Reichert
,
C.
,
Malkwitz
,
A.
, and
König
,
M.
,
2016
, “
Automated Construction of Masonry Buildings Using Cable-Driven Parallel Robots
,”
Proceedings of the International Symposium on Automation and Robotics in Construction
,
Auburn, AL
,
July 18–21
.
21.
Wu
,
Y.
,
Cheng
,
H. H.
,
Fingrut
,
A.
,
Crolla
,
K.
,
Yam
,
Y.
, and
Lau
,
D.
,
2018
, “
Cu-Brick Cable-Driven Robot for Automated Construction of Complex Brick Structures: From Simulation to Hardware Realisation
,”
IEEE International Conference on Simulation, Modeling, and Programming for Autonomous Robots (SIMPAR)
,
Brisbane, Australia
,
May 16–19
, IEEE, pp.
166
173
.
22.
Culla
,
D.
,
Gorrotxategi
,
J.
,
Rodríguez
,
M.
,
Izard
,
J. B.
,
Hervé
,
P. E.
, and
Cañada
,
J.
,
2017
, “
Full Production Plant Automation in Industry Using Cable Robotics With High Load Capacities and Position Accuracy
,”
Iberian Robotics Conference
,
Seville, Spain
,
Nov. 22–24
, Springer, p.
3
.
23.
Martin
,
A.
,
Caro
,
S.
, and
Cardou
,
P.
,
2018
, “Geometric Determination of the Cable-Cylinder Interference Regions in the Workspace of a Cable-Driven Parallel Robot,”
Cable-Driven Parallel Robots
,
C.
Gosselin
,
P.
Cardou
,
T.
Bruckmann
, and
A.
Pott
, eds.,
Springer
,
New York
, pp.
117
127
.
24.
Gagliardini
,
L.
,
Caro
,
S.
,
Gouttefarde
,
M.
,
Wenger
,
P.
, and
Girin
,
A.
,
2015
, “A Reconfigurable Cable-Driven Parallel Robot for Sandblasting and Painting of Large Structures,”
Cable-Driven Parallel Robots
,
A.
Pott
, and
T.
Bruckmann
, eds.,
Springer
,
New York
, pp.
275
291
.
25.
Masiero
,
S.
,
Celia
,
A.
,
Rosati
,
G.
, and
Armani
,
M.
,
2007
, “
Robotic-Assisted Rehabilitation of the Upper Limb After Acute Stroke
,”
Arch. Phys. Med. Rehabil.
,
88
(
2
), pp.
142
149
. 10.1016/j.apmr.2006.10.032
26.
Kang
,
J.
,
Martelli
,
D.
,
Vashista
,
V.
,
Martinez-Hernandez
,
I.
,
Kim
,
H.
, and
Agrawal
,
S. K.
,
2017
, “
Robot-Driven Downward Pelvic Pull to Improve Crouch Gait in Children With Cerebral Palsy
,”
Sci. Rob.
,
2
(
8
), p.
eaan2634
. 10.1126/scirobotics.aan2634
27.
Zanotto
,
D.
,
Rosati
,
G.
,
Minto
,
S.
, and
Rossi
,
A.
,
2014
, “
Sophia-3: A Semiadaptive Cable-Driven Rehabilitation Device With a Tilting Working Plane
,”
IEEE Trans. Rob.
,
30
(
4
), pp.
974
979
. 10.1109/TRO.2014.2301532
28.
Asl
,
H. J.
, and
Yoon
,
J.
,
2017
, “
Stable Assist-as-Needed Controller Design for a Planar Cable-Driven Robotic System
,”
Int. J. Control. Autom. Syst.
,
15
(
6
), pp.
2871
2882
. 10.1007/s12555-016-0492-x
29.
Lamine
,
H.
,
Laribi
,
M. A.
,
Bennour
,
S.
,
Romdhane
,
L.
, and
Zeghloul
,
S.
,
2017
, “
Design Study of a Cable-Based Gait Training Machine
,”
J. Bionic Eng.
,
14
(
2
), pp.
232
244
. 10.1016/S1672-6529(16)60394-3
30.
Rubino
,
F. A.
,
2002
, “
Gait Disorders
,”
Neurologist
,
8
(
4
), pp.
254
262
. 10.1097/00127893-200207000-00005
31.
Blanchet
,
L.
, and
Merlet
,
J.-P.
,
2014
, “
Interference Detection for Cable-Driven Parallel Robots (cdprs)
,”
2014 IEEE/ASME International Conference on Advanced Intelligent Mechatronics
,
Besançon, France
,
July 8–11
, IEEE, pp.
1413
1418
.
32.
Nguyen
,
D. Q.
, and
Gouttefarde
,
M.
,
2015
, “On the Improvement of Cable Collision Detection Algorithms,”
Cable-Driven Parallel Robots
,
A.
Pott
, and
T.
Bruckmann
, eds.,
Springer
,
New York
, pp.
29
40
.
33.
Lesellier
,
M.
, and
Gouttefarde
,
M.
,
2019
, “
A Bounding Volume of the Cable Span for Fast Collision Avoidance Verification
,”
International Conference on Cable-Driven Parallel Robots
,
Krakow, Poland
,
June 30–July 4
, Springer, pp.
173
183
.
34.
Washabaugh
,
E. P.
,
Guo
,
J.
,
Chang
,
C. -K.
,
Remy
,
C. D.
, and
Krishnan
,
C.
,
2018
, “
A Portable Passive Rehabilitation Robot for Upper-Extremity Functional Resistance Training
,”
IEEE Trans. Biomed. Eng.
,
66
(
2
), pp.
496
508
. 10.1109/TBME.2018.2849580
You do not currently have access to this content.