Abstract

Stiffness in compliant mechanisms can be dramatically altered and even eliminated entirely by using static balancing. This requires elastic energy to be inserted before operation, which is most often done with an additional device or preloading assembly. Adding such devices contrasts starkly with primary motivations for using compliant mechanisms, such as part count reduction, increased precision, and miniaturization. However, statically balanced compliant mechanisms with a fully monolithic architecture are scarce. In this article, we introduce two novel statically balanced compliant mechanisms with linear and rotary kinematics that do not require preloading assembly, enabling miniaturization. Static balance is achieved by the principle of opposing constant force and extended to a rotational device by using opposing constant torque mechanisms for the first time. A constant force mechanism based on existing work is used and inspired a novel constant torque mechanism. A single-piece device is obtained by monolithically integrating a bistable switch for preloading, which allows static balance to be turned on and off. The linear device reduces stiffness by 98.5% over 10 mm, has significantly reduced device complexity and has doubled relative range of motion from 3.3% to 6.6% compared to the state of the art. The rotary device reduces stiffness by 90.5% over 0.35 rad.

References

1.
Kota
,
S.
,
Joo
,
J.
,
Li
,
Z.
,
Rodgers
,
S. M.
, and
Sniegowski
,
J.
,
2001
, “
Design of Compliant Mechanisms: Applications to Mems
,”
Analog Int. Circuits Signal Process.
,
29
(
1–2
), pp.
7
15
. 10.1023/A:1011265810471
2.
Huang
,
H.-W.
, and
Yang
,
Y.-J.
,
2012
, “
A Mems Bistable Device With Push-on–Push-Off Capability
,”
J. Microelectromech. Syst.
,
22
(
1
), pp.
7
9
. 10.1109/JMEMS.2012.2228165
3.
Qiu
,
J.
,
Lang
,
J. H.
, and
Slocum
,
A. H.
,
2001
, “
A Centrally-Clamped Parallel-Beam Bistable Mems Mechanism
,”
Technical Digest MEMS 2001 14th IEEE International Conference on Micro Electro Mechanical Systems (Cat. No. 01CH37090)
,
Interlaken, Switzerland
,
Jan. 25
, IEEE, pp.
353
356
.
4.
Middlemiss
,
R.
,
Samarelli
,
A.
,
Paul
,
D.
,
Hough
,
J.
,
Rowan
,
S.
, and
Hammond
,
G.
,
2016
, “
Measurement of the Earth Tides With a MEMS Gravimeter
,”
Nature
,
531
(
7596
), pp.
614
617
. 10.1038/nature17397
5.
Luharuka
,
R.
, and
Hesketh
,
P. J.
,
2007
, “
Design of Fully Compliant, In-Plane Rotary, Bistable Micromechanisms for Mems Applications
,”
Sens. Actuators., A.
,
134
(
1
), pp.
231
238
. 10.1016/j.sna.2006.04.030
6.
Mayyas
,
M.
, and
Stephanou
,
H.
,
2009
, “
Electrothermoelastic Modeling of Mems Gripper
,”
Microsyst. Technol.
,
15
(
4
), pp.
637
646
. 10.1007/s00542-008-0752-7
7.
Farhadi Machekposhti
,
D.
,
Herder
,
J. L.
, and
Tolou
,
N.
,
2019
, “
Frequency Doubling in Elastic Mechanisms Using Buckling of Microflexures
,”
Appl. Phys. Lett.
,
115
(
14
), p.
143503
. 10.1063/1.5119813
8.
Stapel
,
A.
, and
Herder
,
J. L.
,
2004
, “
Feasibility Study of a Fully Compliant Statically Balanced Laparoscopic Grasper
,”
ASME 2004 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Salt Lake City, Utah, USA
,
Sept. 28–Oct. 2
,
American Society of Mechanical Engineers
, pp.
635
643
.
9.
Tolou
,
N.
, and
Herder
,
J. L.
,
2009
, “
Concept and Modeling of a Statically Balanced Compliant Laparoscopic Grasper
,”
ASME 2009 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
San Diego, CA
,
Aug. 30–Sept. 2
,
American Society of Mechanical Engineers
, pp.
163
170
.
10.
de Lange
,
D. J.
,
Langelaar
,
M.
, and
Herder
,
J. L.
,
2008
, “
Towards the Design of a Statically Balanced Compliant Laparoscopic Grasper Using Topology Optimization
,”
ASME 2008 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Brooklyn, NY
,
Aug. 3–6
,
American Society of Mechanical Engineers
, pp.
293
305
.
11.
Lassooij
,
J.
,
Tolou
,
N.
,
Tortora
,
G.
,
Caccavaro
,
S.
,
Menciassi
,
A.
, and
Herder
,
J.
,
2012
, “
A Statically Balanced and Bi-Stable Compliant End Effector Combined With a Laparoscopic 2DOF Robotic Arm
,”
Mech. Sci.
,
3
(
2
), pp.
85
93
. 10.5194/ms-3-85-2012
12.
Tolou
,
N.
,
Gallego
,
J.
, and
Herder
,
J.
,
2010
, “
Statically Balanced Compliant Micro Mechanisms (sb-mems): A Breakthrough in Precision Engineering
,”
Mikroniek
,
50
(
6
), pp.
20
25
.
13.
te Riele
,
F. L.
, and
Herder
,
J. L.
,
Sept. 2001
, “
Perfect Static Balance With Normal Springs
,”
Proceedings of the 2001 ASME Design Engineering Technical Conferences
,
Pittsburg, PA
,
Sept. 9–12
, pp.
9
12
.
14.
Morsch
,
F. M.
, and
Herder
,
J. L.
,
2010
, “
Design of a Generic Zero Stiffness Compliant Joint
,”
ASME 2010 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Montreal, Quebec, Canada
,
Aug. 15–18
,
pAmerican Society of Mechanical Engineers
, pp.
427
435
.
15.
Kuppens
,
P. R.
,
Herder
,
J. L.
, and
Tolou
,
N.
,
2019
, “
Permanent Stiffness Reduction by Thermal Oxidation of Silicon
,”
J. Microelectromech. Syst.
,
28
(
5
), pp.
900
909
. 10.1109/JMEMS.2019.2935379
16.
Pluimers
,
P. J.
,
Tolou
,
N.
,
Jensen
,
B. D.
,
Howell
,
L. L.
, and
Herder
,
J. L.
,
2012
, “
A Compliant On/Off Connection Mechanism for Preloading Statically Balanced Compliant Mechanisms
,”
ASME 2012 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Chicago, IL
,
Aug. 12–15
,
American Society of Mechanical Engineers
, pp.
373
377
.
17.
Pluimers
,
P.
,
2012
, “
Design for Specified Stiffness in Precision Engineering
,”
Ph.D. thesis
,
Delft University of Technology (TU Delft)
,
Delft, Netherlands
.
18.
Tolou
,
N.
,
2012
, “
Statically Balanced Compliant Mechanisms for MEMS and Precision Engineering
,”
Ph.D. thesis
,
Delft University of Technology
,
Delft, The Netherlands
.
19.
Chen
,
G.
, and
Zhang
,
S.
,
2011
, “
Fully-Compliant Statically-Balanced Mechanisms Without Prestressing Assembly: Concepts and Case Studies
,”
Mech. Sci
,
2
(
2
), pp.
169
174
. 10.5194/ms-2-169-2011
20.
Barel
,
M.
,
Machekposhti
,
D. F.
,
Herder
,
J.
,
Tolou
,
N.
, and
Sitti
,
M.
,
2018
, “
Permanent Preloading by Acceleration for Statically Balancing MEMS Devices
,”
2018 International Conference on Reconfigurable Mechanisms and Robots (ReMAR)
,
Delft, The Netherlands
,
June 20–22
, IEEE, pp.
1
11
.
21.
Han
,
M.
,
Yuan
,
Q.
,
Sun
,
X.
, and
Zhang
,
H.
,
2014
, “
Design and Fabrication of Integrated Magnetic MEMS Energy Harvester for Low Frequency Applications
,”
J. Microelectromech. Syst.
,
23
(
1
), pp.
204
212
. 10.1109/JMEMS.2013.2267773
22.
Machekposhti
,
D. F.
,
Herder
,
J. L.
,
Sémon
,
G.
, and
Tolou
,
N.
,
2018
, “
A Compliant Micro Frequency Quadrupler Transmission Utilizing Singularity
,”
J. Microelectromech. Syst.
,
27
(
3
), pp.
506
512
. 10.1109/JMEMS.2018.2825442
23.
Hoetmer
,
K.
,
Herder
,
J. L.
, and
Kim
,
C. J.
,
2009
, “
A Building Block Approach for the Design of Statically Balanced Compliant Mechanisms
,”
ASME 2009 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
San Diego, CA
,
Aug. 30– Sept. 2
,
American Society of Mechanical Engineers
, pp.
313
323
.
24.
Xu
,
Q.
,
2017
, “
Design of a Large-Stroke Bistable Mechanism for the Application in Constant-Force Micropositioning Stage
,”
ASME J. Mech. Rob.
,
9
(
1
), p.
011006
. 10.1115/1.4035220
25.
Tolou
,
N.
,
Pluimers
,
P.
,
Jensen
,
B. D.
,
Magleby
,
S.
,
Howell
,
L.
, and
Herder
,
J. L.
,
2011
, “
Constant Force Micro Mechanism Out of Carbon Nanotube Forest
,”
Proceedings of the 12th EUSPEN International Conference
,
Stockholm, Sweden
,
June
.
26.
Hou
,
C.-W.
, and
Lan
,
C.-C.
,
2013
, “
Functional Joint Mechanisms With Constant-Torque Outputs
,”
Mech. Mach. Theory.
,
62
, pp.
166
181
. 10.1016/j.mechmachtheory.2012.12.002
27.
Nair Prakashah
,
H.
, and
Zhou
,
H.
,
2016
, “
Synthesis of Constant Torque Compliant Mechanisms
,”
ASME J. Mech. Rob.
,
8
(
6
), p.
064503
. 10.1115/1.4034885
28.
Hopkins
,
J. B.
, and
Culpepper
,
M. L.
,
2010
, “
Synthesis of Multi-Degree of Freedom, Parallel Flexure System Concepts Via Freedom and Constraint Topology (Fact)—Part I: Principles
,”
Precis. Eng.
,
34
(
2
), pp.
259
270
. 10.1016/j.precisioneng.2009.06.008
29.
Hopkins
,
J. B.
, and
Culpepper
,
M. L.
,
2010
, “
Synthesis of Multi-Degree of Freedom, Parallel Flexure System Concepts Via Freedom and Constraint Topology (Fact). Part II: Practice
,”
Precis. Eng.
,
34
(
2
), pp.
271
278
. 10.1016/j.precisioneng.2009.06.007
30.
Zirbel
,
S. A.
,
Tolman
,
K. A.
,
Trease
,
B. P.
, and
Howell
,
L. L.
,
2016
, “
Bistable Mechanisms for Space Applications
,”
PLoS One.
,
11
(
12
), p.
e0168218
. 10.1371/journal.pone.0168218
31.
Qiu
,
J.
,
Lang
,
J. H.
, and
Slocum
,
A. H.
,
2004
, “
A Curved-Beam Bistable Mechanism
,”
J. Microelectromech. Syst.
,
13
(
2
), pp.
137
146
. 10.1109/JMEMS.2004.825308
32.
Berntsen
,
L.
,
Gosenshuis
,
D. H.
, and
Herder
,
J. L.
,
2014
, “
Design of a Compliant Monolithic Internally Statically Balanced Four-Bar Mechanism
,”
ASME 2014 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Buffalo, NY
,
Aug. 17–20
,
American Society of Mechanical Engineers
, p.
V05AT08A040
.
33.
Luharuka
,
R.
, and
Hesketh
,
P. J.
,
2008
, “
A Bistable Electromagnetically Actuated Rotary Gate Microvalve
,”
J. Micromech. Microeng.
,
18
(
3
), p.
035015
. 10.1088/0960-1317/18/3/035015
34.
Casavola
,
C.
,
Cazzato
,
A.
,
Moramarco
,
V.
, and
Pappalettere
,
C.
,
2016
, “
Orthotropic Mechanical Properties of Fused Deposition Modelling Parts Described by Classical Laminate Theory
,”
Mater. Des.
,
90
, pp.
453
458
. 10.1016/j.matdes.2015.11.009
35.
Chizari
,
S.
,
Shaw
,
L. A.
, and
Hopkins
,
J. B.
,
2019
, “
Simultaneous Printing and Deformation of Microsystems Via Two-Photon Lithography and Holographic Optical Tweezers
,”
Mater. Horiz.
,
6
(
2
), pp.
350
355
. 10.1039/C8MH01100A
You do not currently have access to this content.