Abstract

Variable stiffness actuators (VSAs) are widely explored as they could improve the safe performance for human-robot interaction and make the system torque controllable based on the internal compliance. This article presents a novel VSA based on the cam-based relocation mechanism (CRM-VSA), which is utilized to change the locations of pivot and spring of a lever mechanism simultaneously. Consequently, such structure makes the actuator compacted and the stiffness regulation designable, which could help engineers to pursue different demands of stiffness regulation. The simultaneous relocations of the pivot and spring also permit a wide range of adjustable stiffness. By introducing linear guide pairs, the internal friction of the relocations of pivot and spring could be greatly reduced, thus enhancing the energy efficiency. To evaluate the performance of the proposed CRM-VSA, the point-to-point control strategy is developed, which contributes to a higher tracking accuracy and oscillation attenuation at both the start and end points of the trajectory. In addition, the performance of torque controllability is also verified through experiments. These excellent capabilities enable the proposed CRM-VSA to be qualified for constructing a robotic arm toward service applications.

References

1.
Yu
,
H.
,
Spenko
,
M.
, and
Dubowsky
,
S.
,
2003
, “
An Adaptive Shared Control System for an Intelligent Mobility Aid for the Elderly
,”
Auton. Robot.
,
15
(
1
), pp.
53
66
. 10.1023/A:1024488717009
2.
Zhu
,
C.
,
Oda
,
M.
,
Yoshioka
,
M.
,
Nishikawa
,
T.
, and
Luo
,
X.
,
2010
, “
Admittance Control Based Walking Support and Power Assistance of an Omnidirectional Wheelchair Typed Robot
,”
IEEE International Conference on Robotics and Biomimetics (ROBIO)
,
Tianjin, China
,
Dec. 14–18
, pp.
381
386
. 10.1109/ROBIO.2010.5723357
3.
Park
,
K. H.
,
Lee
,
H. E.
,
Kim
,
Y.
, and
Bien
,
Z. Z.
,
2008
, “
A Steward Robot for Human-Friendly Human-Machine Interaction in a Smart House Environment
,”
IEEE Trans. Autom. Sci. Eng.
,
5
(
1
), pp.
21
25
. 10.1109/TASE.2007.911674
4.
Allemand
,
Y.
,
Stauffer
,
Y.
,
Clavel
,
R.
, and
Brodard
,
R.
,
2009
, “
Design of a New Lower Extremity Orthosis for Overground Gait Training With the WalkTrainer
,”
IEEE International Conference on Rehabilitation Robotics (ICORR)
,
Kyoto, Japan
,
June 23–26
, pp.
550
555
. 10.1109/ICORR.2009.5209585
5.
Huang
,
J.
,
Huo
,
W.
,
Xu
,
W.
,
Mohammed
,
S.
, and
Amirat
,
Y.
,
2015
, “
Control of Upper-Limb Power-Assist Exoskeleton Using a Human-Robot Interface Based on Motion Intention Recognition
,”
IEEE Trans. Autom. Sci. Eng.
,
12
(
4
), pp.
1257
1270
. 10.1109/TASE.2015.2466634
6.
Wolf
,
S.
,
Grioli
,
G.
,
Eiberger
,
O.
,
Friedl
,
W.
,
Grebenstein
,
M.
, et al
,
2015
, “
Variable Stiffness Actuators: Review on Design and Components
,”
IEEE-ASME Trans. Mechatron.
,
21
(
5
), pp.
2418
2430
.10.1109/TMECH.2015.2501019
7.
Kong
,
K.
, and
Jeon
,
D.
,
2006
, “
Design and Control of an Exoskeleton for the Elderly and Patients
,”
IEEE-ASME Trans. Mechatron.
,
11
(
4
), pp.
428
432
.10.1109/TMECH.2006.878550
8.
Sulzer
,
J. S.
,
Roiz
,
R. A.
,
Peshkin
,
M. A.
, and
Patton
,
J. L.
,
2009
, “
A Highly Backdrivable, Lightweight Knee Actuator for Investigating Gait in Stroke
,”
IEEE Trans. Robot.
,
25
(
3
), pp.
539
548
.10.1109/TRO.2009.2019788
9.
Wolf
,
S.
, and
Hirzinger
,
G.
,
2008
, “
A New Variable Stiffness Design: Matching Requirements of the Next Robot Generation
,”
IEEE International Conference on Robotics and Automation (ICRA)
,
Pasadena, CA
,
May 19–23
, pp.
1741
1746
. 10.1109/ROBOT.2008.4543452
10.
Petit
,
F.
,
Friedl
,
W.
,
Höppner
,
H.
, and
Grebenstein
,
M.
,
2015
, “
Analysis and Synthesis of the Bidirectional Antagonistic Variable Stiffness Mechanism
,”
IEEE-ASME Trans. Mechatron.
,
20
(
2
), pp.
684
695
. 10.1109/TMECH.2014.2321428
11.
Guo
,
J.
, and
Tian
,
G.
,
2016
, “
Mechanical Design and Analysis of the Novel 6-DOF Variable Stiffness Robot Arm Based on Antagonistic Driven Joints
,”
J. Intell. Robot. Syst.
,
82
(
2
), pp.
207
235
. 10.1007/s10846-015-0279-y
12.
Torrealba
,
R. R.
, and
Udelman
,
S. B.
,
2016
, “
Design of Cam Shape for Maximum Stiffness Variability on a Novel Compliant Actuator Using Differential Evolution
,”
Mech. Mach. Theory
,
95
, pp.
114
124
. 10.1016/j.mechmachtheory.2015.09.002
13.
Wang
,
Z.
,
Yip
,
H. M.
,
Navarro-Alarcon
,
D.
,
Li
,
P.
,
Liu
,
Y.
,
Sun
,
D.
,
Wang
,
H.
, and
Cheung
,
T. H.
,
2016
, “
Design of a Novel Compliant Safe Robot Joint With Multiple Working States
,”
IEEE-ASME Trans. Mechatron.
,
21
(
2
), pp.
1193
1198
. 10.1109/TMECH.2015.2500602
14.
Ning
,
Y.
,
Xu
,
W.
,
Huang
,
H.
,
Li
,
B.
, and
Liu
,
F.
,
2019
, “
Design Methodology of a Novel Variable Stiffness Actuator Based on Antagonistic-Driven Mechanism
,”
Proc. Inst. Mech. Eng. Part C-J. Eng. Mech. Eng. Sci.
,
233
(
19–20
), pp.
6967
6984
.10.1177/0954406219869968
15.
Wolf
,
S.
,
Eiberger
,
O.
, and
Hirzinger
,
G.
,
2011
, “
The DLR FSJ: Energy Based Design of a Variable Stiffness Joint
,”
IEEE International Conference on Robotics and Automation (ICRA)
,
Shanghai, China
,
May 9–13
, pp.
5082
5089
. 10.1109/ICRA.2011.5980303
16.
Choi
,
J.
,
Hong
,
S.
,
Lee
,
W.
,
Kang
,
S.
, and
Kim
,
M.
,
2011
, “
A Robot Joint With Variable Stiffness Using Leaf Springs
,”
IEEE Trans. Robot.
,
27
(
2
), pp.
229
238
. 10.1109/TRO.2010.2100450
17.
Kim
,
B. S.
, and
Song
,
J. B.
,
2012
, “
Design and Control of a Variable Stiffness Actuator Based on Adjustable Moment Arm
,”
IEEE Trans. Robot.
,
28
(
5
), pp.
1145
1151
. 10.1109/TRO.2012.2199649
18.
Groothuis
,
S. S.
,
Rusticelli
,
G.
,
Zucchelli
,
A.
,
Stramigioli
,
S.
, and
Carloni
,
R.
,
2014
, “
The Variable Stiffness Actuator vsaUT-II: Mechanical Design, Modeling, and Identification
,”
IEEE-ASME Trans. Mechatron.
,
19
(
2
), pp.
589
597
. 10.1109/TMECH.2013.2251894
19.
Jafari
,
A.
,
Tsagarakis
,
N. G.
,
Sardellitti
,
I.
, and
Caldwell
,
D. G.
,
2014
, “
A New Actuator With Adjustable Stiffness Based on a Variable Ratio Lever Mechanism
,”
IEEE-ASME Trans. Mechatron.
,
19
(
1
), pp.
55
63
. 10.1109/TMECH.2012.2218615
20.
Tonietti
,
G.
,
Schiavi
,
R.
, and
Bicchi
,
A.
,
2005
, “
Design and Control of a Variable Stiffness Actuator for Safe and Fast Physical Human/Robot Interaction
,”
IEEE International Conference on Robotics and Automation (ICRA)
,
Barcelona, Spain
,
Apr. 18–22
, pp.
526
531
. 10.1109/ROBOT.2005.1570172
21.
Palli
,
G.
,
Berselli
,
G.
,
Melchiorri
,
C.
, and
Vassura
,
G.
,
2011
, “
Design of a Variable Stiffness Actuator Based on Flexures
,”
J. Mech. Robot.
,
3
(
3
), p.
034501
. 10.1115/1.4004228
22.
Schiavi
,
R.
,
Grioli
,
G.
,
Sen
,
S.
, and
Bicchi
,
A.
,
2008
, “
VSA-II: A Novel Prototype of Variable Stiffness Actuator for Safe and Performing Robots Interacting With Humans
,”
IEEE International Conference on Robotics and Automation (ICRA)
,
Pasadena, CA
,
May 9–13
, pp.
2171
2176
. 10.1109/ROBOT.2008.4543528
23.
Hurst
,
J. W.
,
Chestnutt
,
J. E.
, and
Rizzi
,
A. A.
,
2010
, “
The Actuator With Mechanically Adjustable Series Compliance
,”
IEEE Trans. Robot.
,
26
(
4
), pp.
597
606
. 10.1109/TRO.2010.2052398
24.
Zhou
,
X.
,
Jun
,
S.
, and
Krovi
,
V.
,
2015
, “
A Cable Based Active Variable Stiffness Module With Decoupled Tension
,”
J. Mech. Robot.
,
7
(
1
), p.
011005
. 10.1115/1.4029308
25.
Hyun
,
D.
,
Yang
,
H. S.
,
Park
,
J.
, and
Shim
,
Y.
,
2010
, “
Variable Stiffness Mechanism for Human-Friendly Robots
,”
Mech. Mach. Theory
,
45
(
6
), pp.
880
897
. 10.1016/j.mechmachtheory.2010.01.001
26.
Yu
,
J.
,
Zhao
,
Y.
,
Chen
,
G.
,
Gu
,
Y.
,
Wang
,
C.
, and
Huang
,
S.
,
2019
, “
Realizing Controllable Physical Interaction Based on an Electromagnetic Variable Stiffness Joint
,”
J. Mech. Robot.
,
11
(
5
), p.
054501
. 10.1115/1.4044002
27.
Jafari
,
A.
,
Tsagarakis
,
N. G.
, and
Caldwell
,
D. G.
,
2013
, “
A Novel Intrinsically Energy Efficient Actuator With Adjustable Stiffness (AwAS)
,”
IEEE-ASME Trans. Mechatron.
,
18
(
1
), pp.
355
365
. 10.1109/TMECH.2011.2177098
28.
Cestari
,
M.
,
Sanz-Merodio
,
D.
,
Arevalo
,
J. C.
, and
Garcia
,
E.
,
2015
, “
An Adjustable Compliant Joint for Lower-Limb Exoskeletons
,”
IEEE-ASME Trans. Mechatron.
,
20
(
2
), pp.
889
898
. 10.1109/TMECH.2014.2324036
29.
Liu
,
L.
,
Leonhardt
,
S.
, and
Misgeld
,
B. J. E.
,
2016
, “
Design and Control of a Mechanical Rotary Variable Impedance Actuator
,”
Mechatronics
,
39
, pp.
226
236
. 10.1016/j.mechatronics.2016.06.002
30.
Wang
,
W.
,
Fu
,
X.
,
Li
,
Y.
, and
Yun
,
C.
,
2016
, “
Design of Variable Stiffness Actuator Based on Modified Gear–Rack Mechanism
,”
J. Mech. Robot
,
8
(
6
), p.
061008
. 10.1115/1.4034142
31.
Shepherd
,
M. K.
, and
Rouse
,
E. J.
,
2017
, “
The VSPA Foot: A Quasi-Passive Ankle-Foot Prosthesis With Continuously Variable Stiffness
,”
IEEE Trans. Neural Syst. Rehabil. Eng.
,
25
(
12
), pp.
2375
2386
. 10.1109/TNSRE.2017.2750113
32.
Jin
,
H.
,
Yang
,
D.
,
Zhang
,
H.
,
Liu
,
Z.
, and
Zhao
,
J.
,
2018
, “
Flexible Actuator With Variable Stiffness and Its Decoupling Control Algorithm: Principle Prototype Design and Experimental Verification
,”
IEEE-ASME Trans. Mechatron.
,
23
(
3
), pp.
1279
1291
. 10.1109/TMECH.2018.2791499
33.
Sun
,
J.
,
Guo
,
Z.
,
Zhang
,
Y.
,
Xiao
,
X.
, and
Tan
,
J.
,
2018
, “
A Novel Design of Serial Variable Stiffness Actuator (SVSA) Based on an Archimedean Spiral Relocation Mechanism
,”
IEEE-ASME Trans. Mechatron.
,
23
(
5
), pp.
2121
2131
. 10.1109/TMECH.2018.2854742
34.
Sun
,
J.
,
Guo
,
Z.
,
Sun
,
D.
,
He
,
S.
, and
Xiao
,
X.
,
2018
, “
Design, Modeling and Control of a Novel Compact, Energy-Efficient, and Rotational Serial Variable Stiffness Actuator (SVSA-II)
,”
Mech. Mach. Theory
,
130
, pp.
123
136
. 10.1016/j.mechmachtheory.2018.07.024
35.
Wang
,
W.
,
Zhao
,
Y.
, and
Li
,
Y.
,
2018
, “
Design and Dynamic Modeling of Variable Stiffness Joint Actuator Based on Archimedes Spiral
,”
IEEE Access
,
6
, pp.
43798
43807
. 10.1109/ACCESS.2018.2864100
You do not currently have access to this content.