Abstract

Previously, we reported the conceptual design of a novel parallel-kinematic flexure mechanism that provides large and decoupled motions in the X, Y, and Z directions, along with good actuator isolation, and small parasitic error motions (Awtar, S., Ustick, J., and Sen, S., 2012, “An XYZ Parallel-Kinematic Flexure Mechanism With Geometrically Decoupled Degrees of Freedom,” ASME J. Mech. Rob., 5(1), p. 015001). This paper presents the detailed design and fabrication of a high-precision experimental setup to characterize and validate the motion attributes of this proposed flexure design via comprehensive measurements. The unique aspects of this experimental setup include a novel modular construction and exact-constraint assembly of the flexure mechanism from 12 identical parallelogram flexure modules. The flexure mechanism along with the sensing and actuation setup in the experiment is designed to enable large range (10 mm) in each direction. Experimental measurements and finite-elements analysis demonstrate <3% variation in motion direction stiffness, 20.4% lost motion, <11.6% cross-axis error, <3.3% actuator isolation, and <9.5 mrad motion stage rotation over the entire 10 mm × 10 mm × 10 mm range of motion.

References

References
1.
Awtar
,
S.
,
Ustick
,
J.
, and
Sen
,
S.
,
2012
, “
An XYZ Parallel-Kinematic Flexure Mechanism With Geometrically Decoupled Degrees of Freedom
,”
ASME J. Mech. Rob.
,
5
(
1
), p.
015001
. 10.1115/1.4007768
2.
Hao
,
G.
,
2013
, “
Towards the Design of Monolithic Decoupled XYZ Compliant Parallel Mechanisms for Multi-Function Applications
,”
Mech. Sci.
,
4
, pp.
291
302
. 10.5194/ms-4-291-2013
3.
Li
,
H.
, and
Hao
,
G.
,
2017
, “
Constraint-Force-Based Approach of Modelling Compliant Mechanisms: Principle and Application
,”
Precis. Eng.
,
47
, pp.
158
181
. http://dx.doi.org/10.1016/j.precisioneng.2016.08.001
4.
Howell
,
L.
,
2001
,
Compliant Mechanisms
,
John Wiley & Sons
,
Hoboken, NJ.
5.
Smith
,
S.
,
2000
,
Flexure: Elements of Elastic Mechanisms
,
Gordon & Breach, CRC Press
.
6.
Nijenhuis
,
M.
,
Meijaard
,
J. P.
,
Mariappan
,
D.
,
Herder
,
J. L.
,
Brouwer
,
D. M.
, and
Awtar
,
S.
,
2017
, “
An Analytical Formulation for the Lateral Support Stiffness of a Spatial Flexure Strip
,”
ASME J. Mech. Des.
,
139
(
5
), p.
051401
. 10.1115/1.4035861
7.
Ustick
,
J.
,
2012
,
Design, Fabrication, and Experimental Characterization of a Large Range XYZ Parallel Kinematic Flexure Mechanism
, M.S.,
University of Michigan
,
Ann Arbor, MI
.
8.
Hao
,
G.
, and
Kong
,
X.
,
2009
, “
A 3-DOF Translational Compliant Parallel Manipulator Based on Flexure Motion
,”
ASME IDETC
, pp.
101
110
.
9.
Tang
,
X.
, and
Chen
,
I.-M.
,
2006
, “
A Large-Displacement and Decoupled XYZ Flexure Parallel Mechanism for Micromanipulation
,”
IEEE International Conference on Automation Science and Engineering
,
Shanghai, China
,
Oct. 8–10
,
IEEE
, pp.
73
78
.
10.
Bacher
,
J.-P.
,
Bottinelli
,
S.
,
Breguet
,
J.-M.
, and
Clavel
,
R.
,
2001
, “
Delta: Design and Control of a Flexure Hinges Mechanism
,”
Microrobotics and Microassembly III
,
Oct. 29–30
, pp.
135
142
.
11.
Li
,
Y.
, and
Xu
,
Q.
,
2005
, “
Kinematic Design of a Novel 3-DOF Compliant Parallel Manipulator for Nanomanipulation
,”
Proceedings of the 2005 IEEE/ASME International Conference on Advanced Intelligent Mechatronics
,
Monterey, CA
,
July 24–28
, pp.
93
98
.
12.
Ku
,
S.-S.
,
Pinsopon
,
U.
,
Cetinkunt
,
S.
, and
Nakajima
,
S.-i.
,
2000
, “
Design, Fabrication, and Real-Time Neural Network Control of a Three-Degrees-of-Freedom Nanopositioner
,”
IEEE/ASME Trans. Mechatron.
,
5
(
3
), pp.
273
280
. 10.1109/3516.868919
13.
Yao
,
Q.
,
Dong
,
J.
, and
Ferreira
,
P. M.
,
2008
, “
A Novel Parallel-Kinematics Mechanisms for Integrated, Multi-Axis Nanopositioning. Part 1. Kinematics and Design for Fabrication
,”
Precis. Eng.
,
32
(
1
), pp.
7
19
. 10.1016/j.precisioneng.2007.03.001
14.
Koseki
,
Y.
,
Tanikawa
,
T.
,
Koyachi
,
N.
, and
Tatsuo
,
A.
,
2000
, “
Kinematic Analysis of Translational 3-DOF Micro Parallel Mechanism Using Matrix Method
,”
Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems
,
Takamatsu, Japan
,
Oct. 31–Nov. 5
, pp.
786
792
.
15.
Parikian
,
T. F.
,
1995
, “
Kinematic Analysis and Design of Parallel Robots
,” Technical Report No. 95-02, Swiss Federal Institute of Technology, Department of Microengineering.
16.
Arakelian
,
V.
,
2018
,
Dynamic Decoupling of Robot Manipulators
,
Springer
,
New York
.
17.
Sarkar
,
N.
,
Geisberger
,
A.
, and
Ellis
,
M. D.
,
2004
, “
Fully Released MEMs XYZ Flexure Stage With Integrated Capacitive Feedback
,” US 6806991.
18.
Liu
,
X.
,
Kim
,
K.
, and
Sun
,
Y.
,
2007
, “
A MEMS Stage for 3-Axis Nanopositioning
,”
J. Micromech. Microeng.
,
17
, pp.
1796
1802
.http://dx.doi.org/10.1088/0960-1317/17/9/007
19.
Error Sources: Probe/Target Angle
”, Lion Precision Technical Brief, LT02-0012, March, 2004.
You do not currently have access to this content.