Abstract

We proved several theorems about the Rubik’s snake toy, which has a chain-like structure with applications in robot design. These mathematical theories can guide people to design beautiful shapes using the Rubik’s snake. We presented an example for shape design to demonstrate the effectiveness of our approach.

References

1.
Fiore
,
A.
,
1981
,
Shaping Rubik’s Snake
,
Penguin Books
,
Harmondsworth, Middlesex, England
.
2.
Korf
,
R. E.
,
1982
, “
A Program that Learns to Solve Rubik’s Cube.
,”
AAAI-82 proceedings
, pp.
164
167
.
3.
Niblo
,
G.
, and
Roller
,
M.
,
1998
, “
Groups Acting on Cubes and Kazhdan’s Property (t)
,”
Proc. Am. Math. Soc.
,
126
(
3
), pp.
693
699
. 10.1090/S0002-9939-98-04463-3
4.
Ding
,
X.
,
Lu
,
S.
, and
Yang
,
Y.
,
2011
, “
Configuration Transformation Theory From a Chain-type Reconfigurable Modular Mechanism-rubik’s Snake
,”
The 13th World Congress in Mechanism and Machine Science
,
Guanajuato, Mexico
,
June
.
5.
Ding
,
X.
, and
Lu
,
S.
,
2013
, “
Fundamental Reconfiguration Theory of Chain-Type Modular Reconfigurable Mechanisms
,”
Mech. Mach. Theory.
,
70
, pp.
487
507
. 10.1016/j.mechmachtheory.2013.08.011
6.
Iguchi
,
K.
,
1998
, “
A Toy Model for Understanding the Conceptual Framework of Protein Folding: Rubik’s Magic Snake Model
,”
Mod. Phys. Lett. B.
,
12
(
13
), pp.
499
506
. 10.1142/S0217984998000603
7.
Liu
,
J.
,
Zhang
,
X.
,
Zhang
,
K.
,
Dai
,
J. S.
,
Li
,
S.
, and
Sun
,
Q.
,
2018
, “
Configuration Analysis of a Reconfigurable Rubik’s Snake Robot
,”
Proc. Inst. Mech. Eng., Part C: J. Mech. Eng. Sci.
,
233
(
9
), pp.
3137
3154
. 10.1177/0954406218805112
8.
White
,
P. J.
,
Revzen
,
S.
,
Thorne
,
C. E.
, and
Yim
,
M.
,
2011
, “
A General Stiffness Model for Programmable Matter and Modular Robotic Structures
,”
Robotica
,
29
(
1 SPEC. ISSUE
), pp.
103
121
. 10.1017/S0263574710000743
9.
Zhang
,
X.
, and
Liu
,
J.
,
2016
, “
Prototype Design of a Rubik Snake Robot
,”
Mech. Mach. Sci.
,
36
, pp.
581
591
.
10.
Liu
,
J.
,
Zhang
,
X.
, and
Hao
,
G.
,
2016
, “
Survey on Research and Development of Reconfigurable Modular Robots
,”
Adv. Mech. Eng.
,
8
(
8
), pp.
1
21
.
11.
Liu
,
J.
,
Wang
,
Y.
,
Ma
,
S.
, and
Li
,
Y.
,
2010
, “
Enumeration of the Non-isomorphic Configurations for a Reconfigurable Modular Robot with Square-cubic-cell Modules
,”
Int. J. Adv. Rob. Syst.
,
7
(
4
), pp.
58
68
.
12.
Stoy
,
K.
, and
Brandt
,
D.
,
2013
, “
Efficient Enumeration of Modular Robot Configurations and Shapes
,”
IEEE International Conference on Intelligent Robots and Systems
,
Tokyo, Japan
,
Nov. 3–7
, pp.
4296
4301
.
13.
Zhang
,
X.
,
Liu
,
J.
,
Feng
,
J.
,
Liu
,
Y.
, and
Ju
,
Z.
,
2020
, “
Effective Capture of Nongraspable Objects for Space Robots Using Geometric Cage Pairs
,”
IEEE/ASME Trans. Mech.
,
25
(
1
), pp.
95
107
. 10.1109/TMECH.2019.2952552
14.
Yim
,
M.
,
Roufas
,
K.
,
Duff
,
D.
,
Zhang
,
Y.
,
Eldershaw
,
C.
, and
Homans
,
S.
,
2003
, “
Modular Reconfigurable Robots in Space Applications
,”
Auto. Rob.
,
14
(
2–3
), pp.
225
237
. 10.1023/A:1022287820808
15.
Li
,
Z.
,
Hou
,
S.
, and
Bishop
,
T.
,
2020
, “
Computational Design and Analysis for a Magic Snake
,”
ASME J. Mech. Rob.
,
12
(
5
), p.
054501
. 10.1115/1.4046351
16.
Bondy
,
J. A.
, and
Murty
,
U. S. R.
,
1976
,
Graph Theory with Applications
,
Elsevier Science Ltd.
,
Oxford, UK
.
17.
Adams
,
C. C.
, and
Franzosa
,
R. D.
,
2008
,
Introduction to Topology: Pure and Applied
,
Pearson Prentice Hall
,
Upper Saddle River, NJ
.
You do not currently have access to this content.