Abstract

The use of continuous and flexible structures instead of rigid links and discrete joints is a growing field of robotics research. Recent work focuses on the inclusion of continuous segments in parallel robots to benefit from their structural advantages, such as a high dexterity and compliance. While some applications and designs of these novel parallel continuum robots have been presented, the field remains largely unexplored. Furthermore, an exact quantification of the kinematic advantages and disadvantages when using continuous structures in parallel robots is yet to be performed. In this paper, planar parallel robot designs using tendon actuated continuum robots instead of rigid links and discrete joints are proposed. Using the well-known 3-RRR manipulator as a reference design, two parallel continuum robots are derived. Inverse and differential kinematics of these designs are modeled using constant curvature assumptions, which can be adapted for other actuation mechanisms than tendons. Their kinematic performances are compared to the conventional parallel robot counterpart. On the basis of this comparison, the advantages and disadvantages of using continuous structures in parallel robots are quantified and analyzed. Results show that parallel continuum robots can be kinematic equivalent and exhibit similar kinematic performances in comparison to conventional parallel robots depending on the chosen design.

References

1.
Burgner-Kahrs
,
J.
,
Rucker
,
D. C.
, and
Choset
,
H.
,
2015
, “
Continuum Robots for Medical Applications: A Survey
,”
IEEE Trans. Robot.
,
31
(
6
), pp.
1261
1280
. 10.1109/TRO.2015.2489500
2.
Bryson
,
C. E.
, and
Rucker
,
D. C.
,
2014
, “
Toward Parallel Continuum Manipulators
,”
IEEE International Conference on Robotics and Automation
,
Hong Kong, China
,
IEEE
.
3.
Till
,
J.
,
Bryson
,
C. E.
,
Chung
,
S.
,
Orekhov
,
A.
, and
Rucker
,
D. C.
,
2015
, “
Efficient Computation of Multiple Coupled Cosserat Rod Models for Real-Time Simulation and Control of Parallel Continuum Manipulators
,”
2015 IEEE International Conference on Robotics and Automation (ICRA)
,
Seattle, WA
,
IEEE
.
4.
Orekhov
,
A. L.
,
Bryson
,
C. E.
,
Till
,
J.
,
Chung
,
S.
, and
Rucker
,
D. C.
,
2015
, “
A Surgical Parallel Continuum Manipulator with a Cable-Driven Grasper
,”
37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society
,
Milan, Italy
,
IEEE
.
5.
Till
,
J.
, and
Rucker
,
D. C.
,
2017
, “
Elastic Stability of Cosserat Rods and Parallel Continuum Robots
,”
IEEE Trans. Robot.
,
33
(
3
), pp.
718
733
. 10.1109/TRO.2017.2664879
6.
Black
,
C. B.
,
Till
,
J.
, and
Rucker
,
D. C.
,
2018
, “
Parallel Continuum Robots: Modeling, Analysis, and Actuation-Based Force Sensing
,”
IEEE Trans. Robot.
,
34
(
1
), pp.
29
47
. 10.1109/TRO.2017.2753829
7.
Young
,
E. M.
, and
Kuchenbecker
,
K. J.
,
2017
, “
Design of a Parallel Continuum Manipulator for 6-dof Fingertip Haptic Display
,”
IEEE World Haptics Conference (WHC)
,
Munich, Germany
,
IEEE
, pp.
599
604
.
8.
Pacchierotti
,
C.
,
Young
,
E. M.
, and
Kuchenbecker
,
K. J.
,
2018
, “
Task-Driven PCA-Based Design Optimization of Wearable Cutaneous Devices
,”
IEEE Robotics and Automation Letters
,
3
(
3
), pp.
2214
2221
. 10.1109/LRA.2018.2810953
9.
Young
,
E. M.
, and
Kuchenbecker
,
K. J.
,
2019
, “
Implementation of a 6-dof Parallel Continuum Manipulator for Delivering Fingertip Tactile Cues
,”
IEEE Trans. Haptics
,
12
(
3
), pp.
295
306
. 10.1109/TOH.2019.2920928
10.
Altuzarra
,
O.
,
Caballero
,
D.
,
Zhang
,
Q.
, and
Campa
,
F. J.
,
2018
, “
Kinematic Characteristics of Parallel Continuum Mechanisms
,”
International Symposium on Advances in Robot Kinematics
,
Bologna, Italy
,
Springer
, pp.
293
301
.
11.
Altuzarra
,
O.
,
Caballero
,
D.
,
Campa
,
F. J.
, and
Pinto
,
C.
,
2019
, “
Position Analysis in Planar Parallel Continuum Mechanisms
,”
Mech. Mach. Theory.
,
132
, pp.
13
29
. 10.1016/j.mechmachtheory.2018.10.014
12.
Altuzarra
,
O.
, and
Merlet
,
J. P.
,
2019
, “
Certified Kinematics Solution of 2-dof Planar Parallel Continuum Mechanisms
,”
IFToMM World Congress on Mechanism and Machine Science
,
Krakow, Poland
,
Springer
, pp.
197
208
.
13.
Campa
,
F.
,
Diez
,
M.
,
Diaz-Caneja
,
D.
, and
Altuzarra
,
O.
,
2019
, “
A 2 Dof Continuum Parallel Robot for Pick & Place Collaborative Tasks
,”
IFToMM World Congress on Mechanism and Machine Science
,
Krakow, Poland
.
14.
Mauzé
,
B.
,
Dahmouche
,
R.
,
Laurent
,
G. J.
,
André
,
A. N.
,
Rougeot
,
P.
,
Sandoz
,
P.
, and
Clévy
,
C.
,
2020
, “
Nanometer Precision with a Planar Parallel Continuum Robot
,”
IEEE Robot. Automat. Lett
,
5
(
3
), pp.
3806
3813
.
15.
Yang
,
Z.
,
Zhu
,
X.
, and
Xu
,
K.
,
2018
, “
Continuum Delta Robot: a Novel Translational Parallel Robot with Continuum Joints
,”
IEEE/ASME International Conference on Advanced Intelligent Mechatronics
,
Auckland, New Zealand
,
IEEE
, pp.
748
755
.
16.
Rivera
,
J. A.
, and
Kim
,
C. J.
,
2014
, “
Spatial Parallel Soft Robotic Architectures
,”
IEEE/RSJ International Conference on Intelligent Robots and Systems
,
Chicago, IL
,
IEEE
.
17.
Hopkins
,
J. B.
,
Rivera
,
J.
,
Kim
,
C.
, and
Krishnan
,
G.
,
2015
, “
Synthesis and Analysis of Soft Parallel Robots Comprised of Active Constraints
,”
ASME J. Mech. Rob.
,
7
(
1
), p.
011002
. 10.1115/1.4029324
18.
White
,
E. L.
,
Case
,
J. C.
, and
Kramer-Bottiglio
,
R.
,
2018
, “
A Soft Parallel Kinematic Mechanism
,”
Soft Robot.
,
5
(
1
), pp.
36
53
. 10.1089/soro.2017.0033
19.
Singh
,
I.
,
Singh
,
M.
,
Pathak
,
P. M.
, and
Merzouki
,
R.
,
2017
, “
Optimal Work Space of Parallel Continuum Manipulator Consisting of Compact Bionic Handling Arms
,”
IEEE International Conference on Robotics and Biomimetics
,
Macau, China
,
IEEE
.
20.
Moghadam
,
A. A. A.
,
Kouzani
,
A.
,
Torabi
,
K.
,
Kaynak
,
A.
, and
Shahinpoor
,
M.
,
2015
, “
Development of a Novel Soft Parallel Robot Equipped with Polymeric Artificial Muscles
,”
Smart Mater. Struct.
,
24
(
3
), p.
035017
. 10.1088/0964-1726/24/3/035017
21.
Merlet
,
J.-P.
,
2006
,
Parallel Robots
, Vol.
128
,
Springer Science & Business Media
.
22.
Laliberté
,
T.
,
Gosselin
,
C. M.
, and
Jean
,
M.
,
1999
, “
Static Balancing of 3-dof Planar Parallel Mechanisms
,”
IEEE/ASME Trans. Mechatron.
,
4
(
4
), pp.
363
377
. 10.1109/3516.809515
23.
Gao
,
F.
,
Liu
,
X.-J.
, and
Chen
,
X.
,
2001
, “
The Relationships Between the Shapes of the Workspaces and the Link Lengths of 3-dof Symmetrical Planar Parallel Manipulators
,”
Mech. Mach. Theory.
,
36
(
2
), pp.
205
220
. 10.1016/S0094-114X(00)00046-X
24.
Briot
,
S.
, and
Bonev
,
I. A.
,
2008
, “
Accuracy Analysis of 3-dof Planar Parallel Robots
,”
Mech. Mach. Theory.
,
43
(
4
), pp.
445
458
. 10.1016/j.mechmachtheory.2007.04.002
25.
Kotlarski
,
J.
,
Abdellatif
,
H.
, and
Heimann
,
B.
,
2008
, “
Improving the Pose Accuracy of a Planar 3rrr Parallel Manipulator Using Kinematic Redundancy and Optimized Switching Patterns
,”
2008 IEEE International Conference on Robotics and Automation
,
Pasadena, CA
,
IEEE
, pp.
3863
3868
.
26.
Kotlarski
,
J.
,
Abdellatif
,
H.
,
Ortmaier
,
T.
, and
Heimann
,
B.
,
2009
, “
Enlarging the Useable Workspace of Planar Parallel Robots Using Mechanisms of Variable Geometry
,”
2009 ASME/IFToMM International Conference on Reconfigurable Mechanisms and Robots
,
London, UK
,
IEEE
, pp.
63
72
.
27.
Simaan
,
N.
,
Taylor
,
R.
, and
Flint
,
P.
,
2004
, “
A Dexterous System for Laryngeal Surgery
,”
IEEE International Conference on Robotics and Automation
,
New Orleans, LA
,
IEEE
.
28.
Chablat
,
D.
, and
Wenger
,
P.
,
2007
, “
The Kinematic Analysis of a Symmetrical Three-Degree-of-Freedom Planar Parallel Manipulator
,”
15th CISM-IFToMM Symposium on Robot Design, Dynamics and Control (Romansy)
, pp.
1
7
, CISM-IFToMM, 2004.
29.
Gosselin
,
C.
, and
Angeles
,
J.
,
1990
, “
Singularity Analysis of Closed-Loop Kinematic Chains
,”
IEEE. Trans. Rob. Autom.
,
6
(
3
), pp.
281
290
. 10.1109/70.56660
30.
Merlet
,
J.-P.
,
2006
, “
Jacobian, Manipulability, Condition Number, and Accuracy of Parallel Robots
,”
ASME J. Mech. Des.
,
128
(
1
), pp.
199
206
. 10.1115/1.2121740
31.
Yoshikawa
,
T.
,
1985
, “
Dynamic Manipulability of Robot Manipulators
,”
IEEE International Conference on Robotics and Automation
,
St Louis, MO
,
IEEE
.
32.
Yun
,
S.-K.
,
2008
, “
Compliant Manipulation for Peg-in-Hole: Is Passive Compliance a Key to Learn Contact Motion?
IEEE International Conference on Robotics and Automation
,
Pasadena, CA
,
IEEE
.
33.
Rucker
,
D. C.
, and
Webster, III
,
R. J. W.
,
2011
, “
Statics and Dynamics of Continuum Robots with General Tendon Routing and External Loading
,”
IEEE Trans. Robot.
,
27
(
6
), pp.
1033
1044
. 10.1109/TRO.2011.2160469
34.
Chikhaoui
,
M. T.
,
Lilge
,
S.
,
Kleinschmidt
,
S.
, and
Burgner-Kahrs
,
J.
,
2019
, “
Comparison of Modeling Approaches for a Tendon Actuated Continuum Robot With Three Extensible Segments
,”
IEEE Robot. Autom. Lett.
,
4
(
2
), pp.
989
996
. 10.1109/LRA.2019.2893610
You do not currently have access to this content.