Abstract

Mechanisms that can both deploy and provide motions to perform desired tasks offer a multifunctional advantage over traditional mechanisms. Developable mechanisms (DMs) are devices capable of conforming to a predetermined developable surface and deploying from that surface to achieve specific motions. This paper builds on the previously identified behaviors of extramobility and intramobility by introducing the terminology of extramobile and intramobile motions, which define the motion of developable mechanisms while interior and exterior to a developable surface. The limits of motion are identified using defined conditions. It is shown that the more difficult of these conditions to kinematically predict may be treated as a non-factor during the design of cylindrical developable mechanisms given certain assumptions. The impact of toggle positions for each case is discussed. Physical prototypes demonstrate the results.

References

References
1.
Cao
,
W.-a.
,
Zhang
,
D.
, and
Ding
,
H.
,
2020
, “
A Novel Two-Layer and Two-Loop Deployable Linkage With Accurate Vertical Straight-Line Motion
,”
ASME J. Mech. Des.
,
142
(
10
), p.
103301
. 10.1115/1.4046239
2.
Wei
,
G.
, and
Dai
,
J. S.
,
2014
, “
A Spatial Eight-Bar Linkage and Its Association With the Deployable Platonic Mechanisms
,”
ASME J. Mech. Rob.
,
6
(
2
), p.
021010
. 10.1115/1.4025472
3.
Huang
,
H.
,
Li
,
B.
,
Zhang
,
T.
,
Zhang
,
Z.
,
Qi
,
X.
, and
Hu
,
Y.
,
2019
, “
Design of Large Single-Mobility Surface-Deployable Mechanism Using Irregularly Shaped Triangular Prismoid Modules
,”
ASME J. Mech. Des.
,
141
(
1
), p.
012301
. 10.1115/1.4041178
4.
Alfattani
,
R.
, and
Lusk
,
C.
,
2018
, “
A Lamina-Emergent Frustum Using a Bistable Collapsible Compliant Mechanism
,”
ASME J. Mech. Des.
,
140
(
12
), p.
125001
. 10.1115/1.4037621
5.
Wei
,
G.
,
Chen
,
Y.
, and
Dai
,
J. S.
,
2014
, “
Synthesis, Mobility, and Multifurcation of Deployable Polyhedral Mechanisms With Radially Reciprocating Motion
,”
ASME J. Mech. Des.
,
136
(
9
), p.
091003
. 10.1115/1.4027638
6.
Ramadoss
,
V.
,
Zlatanov
,
D.
,
Ding
,
X.
,
Zoppi
,
M.
, and
Lyu
,
S.
,
2019
, “
Design, Construction, and Control of Curves and Surfaces Via Deployable Mechanisms
,”
ASME J. Mech. Rob.
,
11
(
6
), p.
061008
. 10.1115/1.4044734
7.
Lu
,
S.
,
Zlatanov
,
D.
, and
Ding
,
X.
,
2017
, “
Approximation of Cylindrical Surfaces With Deployable Bennett Networks
,”
ASME J. Mech. Rob.
,
9
(
2
), p.
021001
. 10.1115/1.4035801
8.
Alejandro Franco
,
J.
,
Carlos Jauregui
,
J.
,
Carbajal
,
A.
, and
Toledano-Ayala
,
M.
,
2017
, “
Shape Morphing Mechanism for Improving Wind Turbines Performance
,”
ASME J. Energy. Res. Technol.
,
139
(
5
), p.
051214
. 10.1115/1.4036724
9.
Aza
,
C.
,
Pirrera
,
A.
, and
Schenk
,
M.
,
2019
, “
Multistable Morphing Mechanisms of Nonlinear Springs
,”
ASME J. Mech. Rob.
,
11
(
5
), p.
051014
. 10.1115/1.4044210
10.
Lusk
,
C.
,
2018
, “
Design of Planar Shape-morphing Mechanism Arrays Using Harmonic Mechanisms
,”
ASME 2018 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
American Society of Mechanical Engineers Digital Collection
,
New York
.
11.
Ushakov
,
V.
,
1999
, “
Developable Surfaces in Euclidean Space
,”
J. Australian Math. Soc. (Seri. A)
,
66
(
03
), pp.
388
402
. 10.1017/S1446788700036685
12.
Nelson
,
T. G.
,
Zimmerman
,
T. K.
,
Magleby
,
S. P.
,
Lang
,
R. J.
, and
Howell
,
L. L.
,
2019
, “
Developable Mechanisms on Developable Surfaces
,”
Sci. Rob.
,
4
(
27
), p.
eaau5171
. 10.1126/scirobotics.aau5171
13.
Greenwood
,
J. R.
,
Magleby
,
S. P.
, and
Howell
,
L. L.
,
2019
, “
Developable Mechanisms on Regular Cylindrical Surfaces
,”
Mech. Mach. Theory.
,
142
(
12
), p.
103584
. 10.1016/j.mechmachtheory.2019.103584
14.
Hyatt
,
L. P.
,
Magleby
,
S. P.
, and
Howell
,
L. L.
,
2020
, “
Developable Mechanisms on Right Conical Surfaces
,”
Mech. Mach. Theory.
,
149
(
7
), p.
103813
. 10.1016/j.mechmachtheory.2020.103813
15.
Seymour
,
K.
,
Sheffield
,
J.
,
Magleby
,
S. P.
, and
Howell
,
L. L.
,
2019
, “
Cylindrical Developable Mechanisms for Minimally Invasive Surgical Instruments
,”
ASME 2019 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
American Society of Mechanical Engineers Digital Collection
,
New York
.
16.
Zhang
,
T.
,
Huang
,
H.
,
Guo
,
H.
, and
Li
,
B.
,
2019
, “
Singularity Avoidance for a Deployable Mechanism Using Elastic Joints
,”
ASME J. Mech. Des.
,
141
(
9
), p.
094501
. 10.1115/1.4042619
17.
Chen
,
Y.
,
Feng
,
J.
, and
Qian
,
Z.
,
2016
, “
A Self-Equilibrated Load Method to Locate Singular Configurations of Symmetric Foldable Structures
,”
Acta Mech.
,
227
(
10
), pp.
2749
2763
. 10.1007/s00707-016-1652-z
18.
Chen
,
Y.
, and
You
,
Z.
,
2009
, “
Two-Fold Symmetrical 6r Foldable Frame and Its Bifurcations
,”
Int. J. Solids. Struct.
,
46
(
25–26
), pp.
4504
4514
. 10.1016/j.ijsolstr.2009.09.012
19.
Grashof
,
F.
,
1883
, Theoretische maschinenlehre: Bd. Theorie der getriebe und der mechanischen messinstrumente, Vol.
2
. L. Voss.
20.
Paul
,
B.
,
1979
, “
A Reassessment of Grashof’s Criterion
,”
ASME J. Mech. Des.
,
101
(
3
), pp.
515
518
.
21.
Barker
,
C. R.
,
1985
, “
A Complete Classification of Planar Four-Bar Linkages
,”
Mech. Mach. Theory.
,
20
(
6
), pp.
535
554
. 10.1016/0094-114X(85)90071-0
22.
Josefsson
,
M.
,
2017
, “
101.38 Metric Relations in Crossed Cyclic Quadrilaterals
,”
Math. Gazette
,
101
(
552
), pp.
499
502
. 10.1017/mag.2017.140
23.
McCarthy
,
J. M.
, and
Soh
,
G. S.
,
2010
,
Geometric Design of Linkages
, Vol.
11
,
Springer Science & Business Media
.
Berlin
.
24.
Hyatt
,
L. P.
,
Greenwood
,
J. R.
,
Butler
,
J. J.
,
Magleby
,
S. P.
, and
Howell
,
L. L.
,
2020
, “
Using Cyclic Quadrilaterals to Design Cylindrical Developable Mechanisms
,”
Proceedings of the 2020 USCToMM Symposium on Mechanical Systems and Robotics
,
P.
Larochelle
, and
J. M.
McCarthy
, eds.,
Springer International Publishing
,
Berlin
, pp.
149
159
.
You do not currently have access to this content.