Abstract

This paper presents the development of a six degrees-of-freedom manipulator with soft end-effector and an inverse kinematic compensator for aerial contact manipulation. Realizing the fact that aerial manipulators can hardly achieve precise position control, a compliant manipulator with soft end-effector is first developed to moderate end-effector positioning errors. The manipulator is designed to be rigid-soft combined. The rigid robotic arm employs the lightweight but high-strength materials. The compliance requirement is achieved by the soft end-effector so that the mechanical design for the joints are largely simplified. These two features are beneficial to lighten the arm and to ensure the accuracy. In the meantime, the pneumatic soft end-effector can further moderate the probable insufficient accuracy by endowing the manipulator with compliance for impact resistance and robustness to positioning errors. With the well-designed manipulator, an inverse kinematic compensator is then proposed to eliminate lumped disturbances from the aerial platform. The compensator can ensure the stabilization of the end-effector by using state estimation from the aerial platform, which is robust and portable as the movement of the platform can be reliably obtained. Both the accuracy and compliance have been well demonstrated after being integrated into a hexarotor platform, and a representative scenario aerial task repairing the wind turbine blade-coating was completed successfully, showing the potential to accomplish complex aerial manipulation tasks.

References

References
1.
Khamseh
,
H. B.
,
Janabi-Sharifi
,
F.
, and
Abdessameud
,
A.
,
2018
, “
Aerial Manipulation—A Literature Survey
,”
Rob. Auton. Syst.
,
107
, pp.
221
235
. 10.1016/j.robot.2018.06.012
2.
Thomas
,
J.
,
Loianno
,
G.
,
Sreenath
,
K.
, and
Kumar
,
V.
,
2014
, “
Toward Image Based Visual Servoing for Aerial Grasping and Perching
,”
2014 IEEE International Conference on Robotics and Automation (ICRA)
,
Hong Kong, China
, IEEE, pp.
2113
2118
.
3.
Mellinger
,
D.
,
Lindsey
,
Q.
,
Shomin
,
M.
, and
Kumar
,
V.
,
2011
, “
Design, Modeling, Estimation and Control for Aerial Grasping and Manipulation
,”
2011 IEEE/RSJ International Conference on Intelligent Robots and Systems
,
San Francisco, CA
, IEEE, pp.
2668
2673
.
4.
Michael
,
N.
,
Fink
,
J.
, and
Kumar
,
V.
,
2011
, “
Cooperative Manipulation and Transportation With Aerial Robots
,”
Auton. Rob.
,
30
(
1
), pp.
73
86
. 10.1007/s10514-010-9205-0
5.
Kim
,
S.
,
Seo
,
H.
,
Choi
,
S.
, and
Kim
,
H. J.
,
2016
, “
Vision-Guided Aerial Manipulation Using a Multirotor With a Robotic Arm
,”
IEEE/ASME Trans. Mech.
,
21
(
4
), pp.
1912
1923
. 10.1109/TMECH.2016.2523602
6.
McArthur
,
D. R.
,
Chowdhury
,
A. B.
, and
Cappelleri
,
D. J.
,
2018
, “
Design of the Interacting-boomcopter Unmanned Aerial Vehicle for Remote Sensor Mounting
,”
ASME J. Mech. Rob.
,
10
(
2
), p.
025001
. 10.1115/1.4038973
7.
Kamel
,
M.
,
Alexis
,
K.
, and
Siegwart
,
R.
,
2016
, “
Design and Modeling of Dexterous Aerial Manipulator
,”
2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
,
Daejeon, South Korea
, IEEE, pp.
4870
4876
.
8.
Kutia
,
J. R.
,
Stol
,
K. A.
, and
Xu
,
W.
,
2018
, “
Aerial Manipulator Interactions With Trees for Canopy Sampling
,”
IEEE/ASME Trans. Mech.
,
23
(
4
), pp.
1740
1749
. 10.1109/TMECH.2018.2837005
9.
Ollero
,
A.
,
Heredia
,
G.
,
Franchi
,
A.
,
Antonelli
,
G.
,
Kondak
,
K.
,
Sanfeliu
,
A.
,
Viguria
,
A.
,
Martinez-de Dios
,
J. R.
,
Pierri
,
F.
,
Cortés
,
J.
,
Santamaria-Navarro
,
A.
,
2018
, “
The Aeroarms Project: Aerial Robots with Advanced Manipulation Capabilities for Inspection and Maintenance
,”
IEEE Rob. Autom. Mag.
,
25
(
4
), pp.
12
23
. 10.1109/MRA.2018.2852789
10.
Danko
,
T. W.
,
Chaney
,
K. P.
, and
Oh
,
P. Y.
,
2015
, “
A Parallel Manipulator for Mobile Manipulating Uavs
,”
2015 IEEE International Conference on Technologies for Practical Robot Applications (TePRA)
,
Woburn, MA
, IEEE, pp.
1
6
.
11.
Khamseh
,
H. B.
, and
Janabi-Sharifi
,
F.
,
2017
, “
Ukf–based Lqr Control of a Manipulating Unmanned Aerial Vehicle
,”
Unmanned Syst.
,
5
(
03
), pp.
131
139
. 10.1142/S2301385017400015
12.
Suarez
,
A.
,
Heredia
,
G.
, and
Ollero
,
A.
,
2018
, “
Design of An Anthropomorphic, Compliant, and Lightweight Dual Arm for Aerial Manipulation
,”
IEEE Access
,
6
, pp.
29173
29189
. 10.1109/ACCESS.2018.2833160
13.
Bellicoso
,
C. D.
,
Buonocore
,
L. R.
,
Lippiello
,
V.
, and
Siciliano
,
B.
,
2015
, “
Design, Modeling and Control of a 5-Dof Light-Weight Robot Arm for Aerial Manipulation
,”
2015 23rd Mediterranean Conference on Control and Automation (MED)
,
Torremolinos, Spain
, IEEE, pp.
853
858
.
14.
Kondak
,
K.
,
Huber
,
F.
,
Schwarzbach
,
M.
,
Laiacker
,
M.
,
Sommer
,
D.
,
Bejar
,
M.
, and
Ollero
,
A.
,
2014
, “
Aerial Manipulation Robot Composed of An Autonomous Helicopter and a 7 Degrees of Freedom Industrial Manipulator
,”
2014 IEEE International Conference on Robotics and Automation (ICRA)
,
Hong Kong, China
, IEEE, pp.
2107
2112
.
15.
Danko
,
T. W.
, and
Oh
,
P. Y.
,
2014
, “
Design and Control of a Hyper-redundant Manipulator for Mobile Manipulating Unmanned Aerial Vehicles
,”
J. Intell. Rob. Syst.
,
73
(
1–4
), pp.
709
723
. 10.1007/s10846-013-9935-2
16.
Ding
,
X.
,
Guo
,
P.
,
Xu
,
K.
, and
Yu
,
Y.
,
2019
, “
A Review of Aerial Manipulation of Small-scale Rotorcraft Unmanned Robotic Systems
,”
Chin. J. Aeronaut.
,
32
(
1
), pp.
200
214
. 10.1016/j.cja.2018.05.012
17.
Baizid
,
K.
,
Giglio
,
G.
,
Pierri
,
F.
,
Trujillo
,
M. A.
,
Antonelli
,
G.
,
Caccavale
,
F.
,
Viguria
,
A.
,
Chiaverini
,
S.
, and
Ollero
,
A.
,
2017
, “
Behavioral Control of Unmanned Aerial Vehicle Manipulator Systems
,”
Auton. Rob.
,
41
(
5
), pp.
1203
1220
. 10.1007/s10514-016-9590-0
18.
Ruggiero
,
F.
,
Lippiello
,
V.
, and
Ollero
,
A.
,
2018
, “
Aerial Manipulation: A Literature Review
,”
IEEE Rob. Aut. Lett.
,
3
(
3
), pp.
1957
1964
. 10.1109/LRA.2018.2808541
19.
Laiacker
,
M.
,
Huber
,
F.
, and
Kondak
,
K.
,
2016
, “
High Accuracy Visual Servoing for Aerial Manipulation Using a 7 Degrees of Freedom Industrial Manipulator
,”
2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
,
Daejeon, South Korea
, IEEE, pp.
1631
1636
.
20.
Santamaria-Navarro
,
A.
,
Grosch
,
P.
,
Lippiello
,
V.
,
Solà
,
J.
, and
Andrade-Cetto
,
J.
,
2017
, “
Uncalibrated Visual Servo for Unmanned Aerial Manipulation
,”
IEEE/ASME Trans. Mech.
,
22
(
4
), pp.
1610
1621
. 10.1109/TMECH.2017.2682283
21.
Shen
,
S.
,
Mulgaonkar
,
Y.
,
Michael
,
N.
, and
Kumar
,
V.
,
2013
, “
Vision-Based State Estimation and Trajectory Control Towards High-Speed Flight with a Quadrotor
,”
In Proc. of Robot.: Sci. and Syst.
,
Berlin, Germany
.
22.
Leishman
,
R. C.
,
Macdonald
,
J. C.
,
Beard
,
R. W.
, and
McLain
,
T. W.
,
2014
, “
Quadrotors and Accelerometers: State Estimation with An Improved Dynamic Model
,”
IEEE Control Syst. Mag.
,
34
(
1
), pp.
28
41
.
23.
Lippiello
,
V.
,
Cacace
,
J.
,
Santamaria-Navarro
,
A.
,
Andrade-Cetto
,
J.
,
Trujillo
,
M. A.
,
Esteves
,
Y. R.
, and
Viguria
,
A.
,
2016
, “
Hybrid Visual Servoing with Hierarchical Task Composition for Aerial Manipulation
,”
IEEE Rob. Autom. Lett.
,
1
(
1
), pp.
259
266
. 10.1109/LRA.2015.2510749
24.
Huber
,
F.
,
Kondak
,
K.
,
Krieger
,
K.
,
Sommer
,
D.
,
Schwarzbach
,
M.
,
Laiacker
,
M.
,
Kossyk
,
I.
,
Parusel
,
S.
,
Haddadin
,
S.
, and
Albu-Schäffer
,
A.
,
2013
, “
First Analysis and Experiments in Aerial Manipulation Using Fully Actuated Redundant Robot Arm
,”
2013 IEEE/RSJ International Conference on Intelligent Robots and Systems
,
Tokyo, Japan
, IEEE, pp.
3452
3457
.
25.
Zhang
,
G.
,
He
,
Y.
,
Dai
,
B.
,
Gu
,
F.
,
Yang
,
L.
,
Han
,
J.
,
Liu
,
G.
, and
Qi
,
J.
,
2018
, “
Grasp a Moving Target From the Air: System & Control of An Aerial Manipulator
,”
2018 IEEE International Conference on Robotics and Automation (ICRA)
,
Brisbane, QLD, Australia
, IEEE, pp.
1681
1687
.
26.
Meng
,
X.
,
He
,
Y.
,
Gu
,
F.
,
Yang
,
L.
,
Dai
,
B.
,
Liu
,
Z.
, and
Han
,
J.
,
2016
, “
Design and Implementation of Rotor Aerial Manipulator System
,”
2016 IEEE International Conference on Robotics and Biomimetics (ROBIO)
,
Qingdao, China
, IEEE,pp.
673
678
.
27.
Suarez
,
A.
,
Heredia
,
G.
, and
Ollero
,
A.
,
2016
, “
Lightweight Compliant Arm with Compliant Finger for Aerial Manipulation and Inspection
,”
2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
,
Daejeon, South Korea
, IEEE, pp.
4449
4454
.
28.
Mishra
,
S.
,
Yang
,
D.
,
Thalman
,
C.
,
Polygerinos
,
P.
, and
Zhang
,
W.
,
2018
, “
Design and Control of a Hexacopter with Soft Grasper for Autonomous Object Detection and Grasping
,”
ASME 2018 Dynamic Systems and Control Conference
,
Atlanta, GA
.
29.
Zhang
,
K.
,
Zhu
,
Y.
,
Lou
,
C.
,
Zheng
,
P.
, and
Kovač
,
M.
,
2019
, “
A Design and Fabrication Approach for Pneumatic Soft Robotic Arms Using 3d Printed Origami Skeletons
,”
2019 2nd IEEE International Conference on Soft Robotics (RoboSoft)
,
Seoul, South Korea
.
30.
She
,
Y.
,
Li
,
C.
,
Cleary
,
J.
, and
Su
,
H.-J.
,
2015
, “
Design and Fabrication of a Soft Robotic Hand with Embedded Actuators and Sensors
,”
ASME J. Mech. Rob.
,
7
(
2
), p.
021007
. 10.1115/1.4029497
31.
Siciliano
,
B.
, and
Khatib
,
O.
,
2016
,
Springer Handbook of Robotics
,
Springer
,
New York
.
32.
Yoshikawa
,
T.
,
1985
, “
Manipulability of Robotic Mechanisms
,”
Int. J. Rob. Res.
,
4
(
2
), pp.
3
9
. 10.1177/027836498500400201
33.
Danko
,
T. W.
, and
Oh
,
P. Y.
,
2013
, “
A Hyper-Redundant Manipulator for Mobile Manipulating Unmanned Aerial Vehicles
,”
2013 International Conference on Unmanned Aircraft Systems (ICUAS)
,
Atlanta, GA
, IEEE, pp.
974
981
.
34.
Katzschmann
,
R. K.
,
Marchese
,
A. D.
, and
Rus
,
D.
,
2015
, “
Autonomous Object Manipulation Using a Soft Planar Grasping Manipulator
,”
Soft Rob.
,
2
(
4
), pp.
155
164
. 10.1089/soro.2015.0013
35.
Galloway
,
K. C.
,
Polygerinos
,
P.
,
Walsh
,
C. J.
, and
Wood
,
R. J.
,
2013
, “
Mechanically Programmable Bend Radius for Fiber-Reinforced Soft Actuators
,”
2013 16th International Conference on Advanced Robotics (ICAR)
,
Montevideo, Uruguay
, IEEE, pp.
1
6
.
36.
Dong
,
W.
,
Gu
,
G.-Y.
,
Zhu
,
X.
, and
Ding
,
H.
,
2014
, “
High-performance Trajectory Tracking Control of a Quadrotor with Disturbance Observer
,”
Sens. Actuators., A.
,
211
, pp.
67
77
. 10.1016/j.sna.2014.03.011
37.
Beeson
,
P.
, and
Ames
,
B.
,
2015
, “
Trac-ik: An Open-Source Library for Improved Solving of Generic Inverse Kinematics
,”
2015 IEEE-RAS 15th International Conference on Humanoid Robots (Humanoids)
,
Seoul, South Korea
, IEEE, pp.
928
935
.
You do not currently have access to this content.