Abstract

Kinematic reliability is an essential index assessing the work performance of robotic manipulators. In general, the kinematic reliability of robotic manipulators is defined as the probability of the pose or position error falling into a specified tolerant region. Therefore, this work proposes an efficient method to conduct kinematic reliability analysis for robotic manipulators under rectangular and spherical allowable safe boundaries in terms of dimension and input uncertainties. First, based on the Baker–Campbell–Hausdorff formula and Lie group theory, the mean and covariance matrix of the distribution of the pose error are analytically determined. Then, the expectation propagation of the multivariate Gaussian and saddlepoint approximation method are employed to calculate the probabilities of kinematic reliability under the rectangular and spherical safe boundaries, respectively. The proposed method takes into account the boundness of the random error variable and is available for arbitrarily distributed errors. Finally, a spatial six degrees-of-freedom industrial robot is used as an example to demonstrate the effectiveness of the proposed method by comparison with other methods. The comparison results indicate that the proposed method has higher accuracy and efficiency.

References

1.
Craig
,
J. J.
,
2009
, Introduction to Robotics: Mechanics and Control, 3/E, Pearson Education India.
2.
Zhu
,
J.
, and
Ting
,
K.-L.
,
2000
, “
Uncertainty Analysis of Planar and Spatial Robots With Joint Clearances
,”
Mech. Mach. Theory
,
35
(
9
), pp.
1239
1256
. 10.1016/S0094-114X(99)00076-2
3.
Nazari
,
V.
, and
Notash
,
L.
,
2016
, “
Motion Analysis of Manipulators With Uncertainty in Kinematic Parameters
,”
ASME J. Mech. Rob.
,
8
(
2
), p.
021014
. 10.1115/1.4031657
4.
Zhan
,
Z.
,
Zhang
,
X.
,
Zhang
,
H.
, and
Chen
,
G.
,
2019
, “
Unified Motion Reliability Analysis and Comparison Study of Planar Parallel Manipulators With Interval Joint Clearance Variables
,”
Mech. Mach. Theory
,
138
, pp.
58
75
. 10.1016/j.mechmachtheory.2019.03.041
5.
Zhao
,
Q.
,
Guo
,
J.
, and
Hong
,
J.
,
2019
, “
Closed-Form Error Space Calculation for Parallel/Hybrid Manipulators Considering Joint Clearance, Input Uncertainty, and Manufacturing Imperfection
,”
Mech. Mach. Theory
,
142
, p.
103608
. 10.1016/j.mechmachtheory.2019.103608
6.
Zhang
,
D.
, and
Han
,
X.
,
2020
, “
Kinematic Reliability Analysis of Robotic Manipulator
,”
ASME J. Mech. Des.
,
142
(
4
), p.
044502
. 10.1115/1.4044436
7.
Pandey
,
M. D.
, and
Zhang
,
X.
,
2012
, “
System Reliability Analysis of the Robotic Manipulator With Random Joint Clearances
,”
Mech. Mach. Theory
,
58
, pp.
137
152
. 10.1016/j.mechmachtheory.2012.08.009
8.
Rao
,
S. S.
, and
Bhatti
,
P.
,
2001
, “
Probabilistic Approach to Manipulator Kinematics and Dynamics
,”
Reliab. Eng. Syst. Saf.
,
72
(
1
), pp.
47
58
. 10.1016/S0951-8320(00)00106-X
9.
Wang
,
J.
,
Zhang
,
J.
, and
Du
,
X.
,
2011
, “
Hybrid Dimension Reduction for Mechanism Reliability Analysis With Random Joint Clearances
,”
Mech. Mach. Theory
,
46
(
10
), pp.
1396
1410
. 10.1016/j.mechmachtheory.2011.05.008
10.
Du
,
X.
,
Guo
,
J.
, and
Beeram
,
H.
,
2008
, “
Sequential Optimization and Reliability Assessment for Multidisciplinary Systems Design
,”
Struct. Multidiscip. Optim.
,
35
(
2
), pp.
117
130
. 10.1007/s00158-007-0121-7
11.
Wu
,
J.
,
Zhang
,
D.
,
Liu
,
J.
, and
Han
,
X.
,
2019
, “
A Moment Approach to Positioning Accuracy Reliability Analysis for Industrial Robots
,”
IEEE Trans. Reliab.
,
69
(
2
), pp.
699
714
.
12.
Zhao
,
Q.
,
Guo
,
J.
,
Zhao
,
D.
,
Yu
,
D.
, and
Hong
,
J.
,
2020
, “
A Novel Approach to Kinematic Reliability Analysis for Planar Parallel Manipulators
,”
ASME J. Mech. Des.
,
142
(
8
), p.
081706
. 10.1115/1.4046075
13.
Zhan
,
Z.
,
Zhang
,
X.
,
Jian
,
Z.
, and
Zhang
,
H.
,
2018
, “
Error Modelling and Motion Reliability Analysis of a Planar Parallel Manipulator With Multiple Uncertainties
,”
Mech. Mach. Theory
,
124
, pp.
55
72
. 10.1016/j.mechmachtheory.2018.02.005
14.
Xu
,
D.
,
2018
, “
Kinematic Reliability and Sensitivity Analysis of the Modified Delta Parallel Mechanism
,”
Int. J. Adv. Rob. Systems
,
15
(
1
), p.
1729881418759106
.
15.
Li
,
Y.
,
Shang
,
D.
,
Fan
,
X.
, and
Liu
,
Y.
,
2019
, “
Motion Reliability Analysis of the Delta Parallel Robot Considering Mechanism Errors
,”
Math. Problems Eng.
,
2019
. 10.1155/2019/3501921
16.
Cui
,
G.
,
Zhang
,
H.
,
Zhang
,
D.
, and
Xu
,
F.
,
2015
, “
Analysis of the Kinematic Accuracy Reliability of a 3-DOF Parallel Robot Manipulator
,”
Int. J. Adv. Rob. Systems
,
12
(
2
), p.
15
. 10.5772/60056
17.
Kluz
,
R.
, and
Trzepieciński
,
T.
,
2014
, “
The Repeatability Positioning Analysis of the Industrial Robot Arm
,”
Assembly Autom.
,
34
(
3
), pp.
285
295
. 10.1108/AA-07-2013-070
18.
Zhao
,
Q.
,
Guo
,
J.
, and
Hong
,
J.
,
2020
, “
Time-Dependent System Kinematic Reliability Analysis for Planar Parallel Manipulators
,”
Mech. Mach. Theory
,
152
, p.
103939
. 10.1016/j.mechmachtheory.2020.103939
19.
Kim
,
J.
,
Song
,
W.-J.
, and
Kang
,
B.-S.
,
2010
, “
Stochastic Approach to Kinematic Reliability of Open-Loop Mechanism With Dimensional Tolerance
,”
Appl. Math. Model.
,
34
(
5
), pp.
1225
1237
. 10.1016/j.apm.2009.08.009
20.
Wang
,
W.
,
Wang
,
J.
,
Fu
,
J.-H.
, and
Lu
,
G.-D.
,
2019
, “
A Moment-Matching Based Method for the Analysis of Manipulator’s Repeatability of Positioning With Arbitrarily Distributed Joint Clearances
,”
Eksploatacja i Niezawodność-Maintenance and Reliability
,
21
(
1
), pp.
1
20
. 10.17531/ein.2019.1.2
21.
Shi
,
Z.
,
1994
, “
Reliability Analysis and Synthesis of Robot Manipulators
,”
Proceedings of Annual Reliability and Maintainability Symposium (RAMS)
,
Anaheim, CA
,
Jan. 24–27
,
IEEE
, pp.
201
205
.
22.
Bhatti
,
P.
, and
Rao
,
S. S.
,
1988
, “
Reliability Analysis of Robot Manipulators
,”
J. Mech. Transmissions, Autom. Des.
,
110
(
2
), pp.
175
181
. 10.1115/1.3258923
23.
Huang
,
B.
, and
Du
,
X.
,
2006
, “
Uncertainty Analysis by Dimension Reduction Integration and Saddlepoint Approximations
,”
ASME J. Mech. Des.
,
128
(
1
), pp.
26
33
. 10.1115/1.2118667
24.
Huang
,
X.
,
Hu
,
S.
,
Zhang
,
Y.
, and
Xu
,
Y.
,
2015
, “
A Method to Determine Kinematic Accuracy Reliability of Gear Mechanisms With Truncated Random Variables
,”
Mech. Mach. Theory
,
92
, pp.
200
212
. 10.1016/j.mechmachtheory.2015.04.017
25.
Luo
,
K.
, and
Du
,
X.
,
2013
, “
Probabilistic Mechanism Analysis With Bounded Random Dimension Variables
,”
Mech. Mach. Theory
,
60
, pp.
112
121
. 10.1016/j.mechmachtheory.2012.10.001
26.
Wang
,
Y.
, and
Chirikjian
,
G. S.
,
2008
, “
Nonparametric Second-Order Theory of Error Propagation on Motion Groups
,”
Int. J. Rob. Res.
,
27
(
11–12
), pp.
1258
1273
. 10.1177/0278364908097583
27.
Chirikjian
,
G. S.
, and
Kyatkin
,
A. B.
,
2016
,
Harmonic Analysis for Engineers and Applied Scientists: Updated and Expanded Edition
,
Courier Dover Publications
,
New York
.
28.
Chirikjian
,
G. S.
,
2011
,
Stochastic Models, Information Theory, and Lie Groups, Volume 2: Analytic Methods and Modern Applications
,
Springer Science & Business Media
,
New York
.
29.
Barfoot
,
T. D.
, and
Furgale
,
P. T.
,
2014
, “
Associating Uncertainty With Three-Dimensional Poses for Use in Estimation Problems
,”
IEEE Transactions Rob.
,
30
(
3
), pp.
679
693
. 10.1109/TRO.2014.2298059
30.
Johnson
,
R. A.
, and
Wichern
,
D. W.
,
2002
,
Applied Multivariate Statistical Analysis
,
Prentice Hall Upper Saddle River
,
NJ
.
31.
Minka
,
T. P.
,
2001
, “
Expectation Propagation for Approximate Bayesian Inference
,”
Proceedings of the Seventeenth Conference on Uncertainty in Artificial Intelligence
,
Seattle, WA
,
Aug. 2–5
,
Morgan Kaufmann Publishers Inc.
, pp.
362
369
.
32.
Cunningham
,
J. P.
,
Hennig
,
P.
, and
Lacoste-Julien
,
S.
,
2011
, “
Gaussian Probabilities and Expectation Propagation
,” arXiv preprint arXiv:1111.6832.
33.
Du
,
X.
,
2008
, “
Saddlepoint Approximation for Sequential Optimization and Reliability Analysis
,”
ASME J. Mech. Des.
,
130
(
1
), p.
011011
. 10.1115/1.2717225
34.
Hu
,
Z.
,
2019
,
Time-Dependent Reliability Methodologies With Saddlepoint Approximation
,
Missouri University
.
35.
Liu
,
H.
,
Li
,
B.
,
Zhang
,
L.
, and
Li
,
X.
,
2020
, “
Optimizing Heat-Absorption Efficiency of Phase Change Materials by Mimicking Leaf Vein Morphology
,”
Appl. Energy
,
269
, p.
114982
. 10.1016/j.apenergy.2020.114982
You do not currently have access to this content.