Abstract

Walking with load carriage is a common requirement for individuals in many situations. Legged exoskeletons can transfer the load weight to the ground with rigid-leg structures, thus reducing the load weight borne by the human user. However, the inertia of paralleled structures and the mechanical joint tend to disturb natural motions of human limbs, leading to high-energy consumption. Different from exoskeletons, Supernumerary Robotic Limbs (SuperLimbs) are kinematically independent of the human limbs, thus avoiding the physical interference with the human limbs. In this paper, a SuperLimb system is proposed to assist the human walking with load carriage. The system has two rigid robotic limbs, and each robotic limb has four degrees-of-freedom (DOFs). The SuperLimbs can transfer the load weight to the ground through the rigid structures, thus reducing the weight borne by the human user. A hybrid control strategy is presented to assist the human as well as avoid disturbing user’s natural motions. Motions of the SuperLimb system are generated autonomously to follow the gait of the human user. The gait synchronization is controlled by a finite state machine, which uses inertial sensors to detect the human gait. Human walking experiments are conducted to verify this concept. Experiments indicate that the SuperLimbs can follow the human gait as well as distribute the load weight. Results show that our SuperLimb system can reduce 85.7% of load weight borne by the human when both robotic limbs support and 55.8% load weight on average. This study may inspire the design of other wearable robots and may provide efficient solutions for human loaded walking.

References

References
1.
Louhevaara
,
V.
,
Smolander
,
J.
,
Tuomi
,
T.
,
Korhonen
,
O.
, and
Jaakkola
,
J.
,
1985
, “
Effects of an SCBA on Breathing Pattern, Gas Exchange, and Heart Rate During Exercise
,”
J. Occupational Med.
,
27
(
3
), pp.
213
216
.
2.
Walsh
,
C. J.
,
Endo
,
K.
, and
Herr
,
H.
,
2007
, “
A Quasi-Passive Leg Exoskeleton for Load-Carrying Augmentation
,”
Int. J. Human. Rob.
,
4
(
03
), pp.
487
506
. 10.1142/S0219843607001126
3.
Zoss
,
A. B.
,
Kazerooni
,
H.
, and
Chu
,
A.
,
2006
, “
Biomechanical Design of the Berkeley Lower Extremity Exoskeleton (BLEEX)
,”
IEEE/ASME Trans. Mechatron.
,
11
(
2
), pp.
128
138
. 10.1109/TMECH.2006.871087
4.
Kazerooni
,
H.
,
Steger
,
R.
, and
Huang
,
L.
,
2006
, “
Hybrid Control of the Berkeley Lower Extremity Exoskeleton (BLEEX)
,”
Int. J. Rob. Res.
,
25
(
5–6
), pp.
561
573
. 10.1177/0278364906065505
5.
Mooney
,
L. M.
,
Rouse
,
E. J.
, and
Herr
,
H. M.
,
2014
, “
Autonomous Exoskeleton Reduces Metabolic Cost of Human Walking During Load Carriage
,”
J. Neuroeng. Rehab.
,
11
(
1
), p.
80
. 10.1186/1743-0003-11-80
6.
Panizzolo
,
F. A.
,
Galiana
,
I.
,
Asbeck
,
A. T.
,
Siviy
,
C.
,
Schmidt
,
K.
,
Holt
,
K. G.
, and
Walsh
,
C. J.
,
2016
, “
A Biologically-Inspired Multi-Joint Soft Exosuit That Can Reduce the Energy Cost of Loaded Walking
,”
J. Neuroeng. Rehab.
,
13
(
1
), p.
43
. 10.1186/s12984-016-0150-9
7.
Mooney
,
L. M.
, and
Herr
,
H. M.
,
2016
, “
Biomechanical Walking Mechanisms Underlying the Metabolic Reduction Caused by an Autonomous Exoskeleton
,”
J. Neuroeng. Rehab.
,
13
(
4
), pp.
1
12
. 10.1186/s12984-016-0111-3
8.
Gregorczyk
,
K. N.
,
Hasselquist
,
L.
,
Schiffman
,
J. M.
,
Bensel
,
C. K.
,
Obusek
,
J. P.
, and
Gutekunst
,
D. J.
,
2010
, “
Effects of a Lower-Body Exoskeleton Device on Metabolic Cost and Gait Biomechanics During Load Carriage
,”
Ergonomics
,
53
(
10
), pp.
1263
1275
. 10.1080/00140139.2010.512982
9.
Mooney
,
L. M.
,
Rouse
,
E. J.
, and
Herr
,
H. M.
,
2014
, “
Autonomous Exoskeleton Reduces Metabolic Cost of Human Walking
,”
J. Neuroeng. Rehab.
,
11
(
1
), p.
80
. 10.1186/1743-0003-11-80
10.
Liu
,
J.
,
Xiong
,
C.
, and
Fu
,
C.
,
2019
, “
An Ankle Exoskeleton Using a Lightweight Motor to Create High Power Assistance for Push-Off
,”
ASME J. Mech. Rob.
,
11
(
4
), p.
041001
. 10.1115/1.4043456
11.
Chang
,
Y.
,
Wang
,
W.
, and
Fu
,
C.
,
2020
, “
A Lower Limb Exoskeleton Recycling Energy From Knee and Ankle Joints to Assist Push-Off
,”
ASME J. Mech. Rob.
,
12
(
5
), p.
051011
. 10.1115/1.4046835
12.
Hussain
,
I.
,
Salvietti
,
G.
,
Spagnoletti
,
G.
,
Malvezzi
,
M.
,
Cioncoloni
,
D.
,
Rossi
,
S.
, and
Prattichizzo
,
D.
,
2017
, “
A Soft Supernumerary Robotic Finger and Mobile Arm Support for Grasping Compensation and Hemiparetic Upper Limb Rehabilitation
,”
Rob. Auton. Syst.
,
93
, pp.
1
12
. 10.1016/j.robot.2017.03.015
13.
Tiziani
,
L.
,
Hart
,
A.
,
Cahoon
,
T.
,
Wu
,
F.
,
Asada
,
H. H.
, and
Hammond
,
F. L.
,
2017
, “
Empirical Characterization of Modular Variable Stiffness Inflatable Structures for Supernumerary Grasp-Assist Devices
,”
Int. J. Rob. Res.
,
36
(
13–14
), pp.
1391
1413
. 10.1177/0278364917714062
14.
Llorens-Bonilla
,
B.
,
Parietti
,
F.
, and
Asada
,
H.
,
2012
, “
Demonstration-Based Control of Supernumerary Robotic Limbs
,”
2012 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
,
Vilamoura, Algarve, Portugal
,
Oct. 7–12
,
IEEE
.
15.
Davenport
,
C.
,
Parietti
,
F.
, and
Asada
,
H. H.
,
2012
, “
Design and Biomechanical Analysis of Supernumerary Robotic Limbs
,”
ASME 2012 5th Annual Dynamic Systems and Control Conference Joint With the JSME 2012 11th Motion and Vibration Conference
,
Fort Lauderdale, FL
,
Oct. 17–19
, American Society of Mechanical Engineers Digital Collection, pp.
787
793
.
16.
Bonilla
,
B. L.
, and
Asada
,
H. H.
,
2014
, “
A Robot on the Shoulder: Coordinated Human-Wearable Robot Control Using Coloured Petri Nets and Partial Least Squares Predictions
,”
2014 IEEE International Conference on Robotics and Automation (ICRA)
,
Hong Kong, China
,
May 31–June 7
, IEEE, pp.
119
125
.
17.
Parietti
,
F.
, and
Asada
,
H. H.
,
2013
, “
Dynamic Analysis and State Estimation for Wearable Robotic Limbs Subject to Human-Induced Disturbances
,”
2013 IEEE International Conference on Robotics and Automation (ICRA)
,
Karlsruhe, Germany
,
May 6–10
, IEEE, pp.
3880
3887
.
18.
Parietti
,
F.
,
Chan
,
K.
, and
Asada
,
H. H.
,
2014
, “
Bracing the Human Body With Supernumerary Robotic Limbs for Physical Assistance and Load Reduction
,”
2014 IEEE International Conference on Robotics and Automation (ICRA)
,
Hong Kong, China
,
May 31–June 7
, IEEE, pp.
141
148
.
19.
Parietti
,
F.
, and
Asada
,
H. H.
,
2014
, “
Supernumerary Robotic Limbs for Aircraft Fuselage Assembly: Body Stabilization and Guidance by Bracing
,”
2014 IEEE International Conference on Robotics and Automation (ICRA)
,
Hong Kong, China
,
May 31–June 7
, IEEE,pp.
1176
1183
.
20.
Kurek
,
D. A.
, and
Asada
,
H. H.
,
2017
, “
The Mantisbot: Design and Impedance Control of Supernumerary Robotic Limbs for Near-Ground Work
,”
2017 IEEE International Conference on Robotics and Automation (ICRA)
,
Singapore
,
May 29–June 3
, IEEE,pp.
5942
5947
.
21.
Parietti
,
F.
,
Chan
,
K. C.
,
Hunter
,
B.
, and
Asada
,
H. H.
,
2015
, “
Design and Control of Supernumerary Robotic Limbs for Balance Augmentation
,”
2015 IEEE International Conference on Robotics and Automation (ICRA)
,
Seattle, WA
,
May 26–30
, IEEE, pp.
5010
5017
.
22.
Parietti
,
F.
, and
Asada
,
H.
,
2016
, “
Supernumerary Robotic Limbs for Human Body Support
,”
IEEE Trans. Rob.
,
32
(
2
), pp.
301
311
. 10.1109/TRO.2016.2520486
23.
Treers
,
L.
,
Lo
,
R.
,
Cheung
,
M.
,
Guy
,
A.
,
Guggenheim
,
J.
,
Parietti
,
F.
, and
Asada
,
H.
,
2016
, “
Design and Control of Lightweight Supernumerary Robotic Limbs for Sitting/Standing Assistance
,”
International Symposium on Experimental Robotics
,
Tokyo, Japan
,
Oct. 3–6
, Springer, pp.
299
308
.
24.
Gonzalez
,
D. J.
, and
Asada
,
H. H.
,
2018
, “
Design of Extra Robotic Legs for Augmenting Human Payload Capabilities by Exploiting Singularity and Torque Redistribution
,”
2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
,
Madrid, Spain
,
Oct. 1–5
, IEEE, pp.
4348
4354
.
25.
Gonzalez
,
D. J.
, and
Asada
,
H. H.
,
2019
, “
Hybrid Open-Loop Closed-Loop Control of Coupled Human–Robot Balance During Assisted Stance Transition With Extra Robotic Legs
,”
IEEE Rob. Autom. Lett.
,
4
(
2
), pp.
1676
1683
. 10.1109/LRA.2019.2897177
26.
Parietti
,
F.
, and
Asada
,
H. H.
,
2017
, “
Independent, Voluntary Control of Extra Robotic Limbs
,”
2017 IEEE International Conference on Robotics and Automation (ICRA)
,
Singapore
,
May 29–June 3
, IEEE, pp.
5954
5961
.
27.
Penaloza
,
C. I.
, and
Nishio
,
S.
,
2018
, “
BMI Control of a Third Arm for Multitasking
,”
Sci. Rob.
,
3
(
20
), p.
eaat1228
. 10.1126/scirobotics.aat1228
28.
Chen
,
G.
,
Chan
,
C. K.
,
Guo
,
Z.
, and
Yu
,
H.
,
2013
, “
A Review of Lower Extremity Assistive Robotic Exoskeletons in Rehabilitation Therapy
,”
Crit. Rev. Biomed. Eng.
,
41
(
4–5
), pp.
343
363
. 10.1615/CritRevBiomedEng.2014010453
29.
Hao
,
M.
,
Chen
,
K.
, and
Fu
,
C.
,
2019
, “
Effects of Hip Torque During Step-to-Step Transition on Center-of-Mass Dynamics During Human Walking Examined With Numerical Simulation
,”
J. Biomech.
,
90
, pp.
33
39
. 10.1016/j.jbiomech.2019.04.025
30.
Hao
,
M.
,
Chen
,
K.
, and
Fu
,
C.
,
2019
, “
Smoother-Based 3D Foot Trajectory Estimation Using Inertial Sensors
,”
IEEE Trans. Biomed. Eng.
,
66
(
12
), pp.
3534
3542
. 10.1109/TBME.2019.2907322
31.
Zhang
,
K.
,
Xiong
,
C.
,
Zhang
,
W.
,
Liu
,
H.
,
Lai
,
D.
,
Rong
,
Y.
, and
Fu
,
C.
,
2019
, “
Environmental Features Recognition for Lower Limb Prostheses Toward Predictive Walking
,”
IEEE Trans. Neural Syst. Rehab. Eng.
,
27
(
3
), pp.
465
476
. 10.1109/TNSRE.2019.2895221
32.
Zhang
,
K.
,
Luo
,
J.
,
Xiao
,
W.
,
Zhang
,
W.
,
Liu
,
H.
,
Zhu
,
J.
,
Lu
,
Z.
,
Rong
,
Y.
,
de Silva
,
C. W.
, and
Fu
,
C.
,
2020
, “
A Subvision System for Enhancing the Environmental Adaptability of the Powered Transfemoral Prosthesis
,”
IEEE Trans. Cybernet.
,
PP
(
99
), pp.
1
13
.
33.
Wu
,
Y.
,
Chen
,
K.
, and
Fu
,
C.
,
2016
, “
Effects of Load Connection Form on Efficiency and Kinetics of Biped Walking
,”
ASME J. Mech. Rob.
,
8
(
6
), p.
061015
. 10.1115/1.4034464
34.
Yang
,
L.
,
Zhang
,
J.
,
Xu
,
Y.
,
Chen
,
K.
, and
Fu
,
C.
,
2020
, “
Energy Performance Analysis of a Suspended Backpack With An Optimally Controlled Variable Damper for Human Load Carriage
,”
Mech. Mach. Theory
,
146
, p.
103738
. 10.1016/j.mechmachtheory.2019.103738
35.
Rome
,
L. C.
,
Flynn
,
L.
,
Goldman
,
E. M.
, and
Yoo
,
T. D.
,
2005
, “
Generating Electricity While Walking With Loads
,”
Science
,
309
(
5741
), pp.
1725
1728
. 10.1126/science.1111063
36.
Rome
,
L. C.
,
Flynn
,
L.
, and
Yoo
,
T. D.
,
2006
, “
Biomechanics: Rubber Bands Reduce the Cost of Carrying Loads
,”
Nature
,
444
(
7122
), p.
1023
. 10.1038/4441023a
37.
Kuo
,
A. D.
,
2005
, “
Harvesting Energy by Improving the Economy of Human Walking
,”
Science
,
309
(
5741
), pp.
1686
1687
. 10.1126/science.1118058
You do not currently have access to this content.