Abstract

Continuum robots have the potential to form an effective interface between the patient and surgeon in minimally invasive procedures. Magnetic actuation has the potential for accurate catheter steering, reducing tissue trauma and decreasing radiation exposure. In this paper, a new design of a monolithic metallic compliant continuum manipulator is presented, with flexures for precise motion. Contactless actuation is achieved using time-varying magnetic fields generated by an array of electromagnetic coils. The motion of the manipulator under magnetic actuation for planar deflection is studied. The mean errors of the theoretical model compared to experiments over three designs are found to be 1.9 mm and 5.1 deg in estimating the in-plane position and orientation of the tip of the manipulator, respectively, and 1.2 mm for the whole shape of the manipulator. Maneuverability of the manipulator is demonstrated by steering it along a path of known curvature and also through a gelatin phantom, which is visualized in real time using ultrasound imaging, substantiating its application as a steerable surgical manipulator.

References

References
1.
Chirikjian
,
G. S.
, and
Burdick
,
J. W.
,
1994
, “
A Hyper-Redundant Manipulator
,”
IEEE Rob. Autom. Mag.
,
1
(
4
), pp.
22
29
. 10.1109/100.388263
2.
Vitiello
,
V.
,
Lee
,
S.-L.
,
Cundy
,
T. P.
, and
Yang
,
G.-Z.
,
2012
, “
Emerging Robotic Platforms for Minimally Invasive Surgery
,”
IEEE Rev. Biomed. Eng.
,
6
, pp.
111
126
. 10.1109/RBME.2012.2236311
3.
Bergeles
,
C.
, and
Yang
,
G.-Z.
,
2013
, “
From Passive Tool Holders to Microsurgeons: Safer, Smaller, Smarter Surgical Robots
,”
IEEE Trans. Biomed. Eng.
,
61
(
5
), pp.
1565
1576
. 10.1109/TBME.2013.2293815
4.
Burgner-Kahrs
,
J.
,
Rucker
,
D. C.
, and
Choset
,
H.
,
2015
, “
Continuum Robots for Medical Applications: A Survey
,”
IEEE Trans. Rob.
,
31
(
6
), pp.
1261
1280
. 10.1109/TRO.2015.2489500
5.
Webster
,
R. J.
, III
, and
Jones
,
B. A.
,
2010
, “
Design and Kinematic Modeling of Constant Curvature Continuum Robots: A Review
,”
Int. J. Rob. Res.
,
29
(
13
), pp.
1661
1683
. 10.1177/0278364910368147
6.
Burgner
,
J.
,
Swaney
,
P. J.
,
Lathrop
,
R. A.
,
Weaver
,
K. D.
, and
Webster
,
R. J.
,
2013
, “
Debulking From Within: A Robotic Steerable Cannula for Intracerebral Hemorrhage Evacuation
,”
IEEE Trans. Biomed. Eng.
,
60
(
9
), pp.
2567
2575
. 10.1109/TBME.2013.2260860
7.
Gilbert
,
H. B.
,
Rucker
,
D. C.
, and
Webster
,
R. J.
, III,
2016
, “Concentric Tube Robots: The State of the Art and Future Directions”
Robotics Research: The 16th International Symposium ISRR
,
Springer
,
New York
, pp.
253
269
.
8.
Goldman
,
R. E.
,
Bajo
,
A.
,
MacLachlan
,
L. S.
,
Pickens
,
R.
,
Herrell
,
S. D.
, and
Simaan
,
N.
,
2012
, “
Design and Performance Evaluation of a Minimally Invasive Telerobotic Platform for Transurethral Surveillance and Intervention
,”
IEEE Trans. Biomed. Eng.
,
60
(
4
), pp.
918
925
. 10.1109/TBME.2012.2226031
9.
Berthet-Rayne
,
P.
,
Gras
,
G.
,
Leibrandt
,
K.
,
Wisanuvej
,
P.
,
Schmitz
,
A.
,
Seneci
,
C. A.
, and
Yang
,
G.-Z.
,
2018
, “
The I 2 Snake Robotic Platform for Endoscopic Surgery
,”
Ann. Biomed. Eng.
,
46
(
10
), pp.
1663
1675
. 10.1007/s10439-018-2066-y
10.
Saliba
,
W.
,
Cummings
,
J. E.
,
Oh
,
S.
,
Zhang
,
Y.
,
Mazgalev
,
T. N.
,
Schweikert
,
R. A.
,
Burkhardt
,
J. D.
, and
Natale
,
A.
,
2006
, “
Novel Robotic Catheter Remote Control System: Feasibility and Safety of Transseptal Puncture and Endocardial Catheter Navigation
,”
J. Cardiovasc. Electrophysiol.
,
17
(
10
), pp.
1102
1105
. 10.1111/j.1540-8167.2006.00556.x
11.
Thomas
,
D.
,
Scholz
,
E. P.
,
Schweizer
,
P. A.
,
Katus
,
H. A.
, and
Becker
,
R.
,
2012
, “
Initial Experience With Robotic Navigation for Catheter Ablation of Paroxysmal and Persistent Atrial Fibrillation
,”
J. Electrocardiol.
,
45
(
2
), pp.
95
101
. 10.1016/j.jelectrocard.2011.05.005
12.
Pantos
,
I.
,
Patatoukas
,
G.
,
Katritsis
,
D. G.
, and
Efstathopoulos
,
E.
,
2009
, “
Patient Radiation Doses in Interventional Cardiology Procedures
,”
Curr. Cardiol. Rev.
,
5
(
1
), pp.
1
11
. 10.2174/157340309787048059
13.
Kim
,
A. M.
,
Turakhia
,
M.
,
Lu
,
J.
,
Badhwar
,
N.
,
Lee
,
B. K.
,
Lee
,
R. J.
,
Marcus
,
G. M.
,
Tseng
,
Z. H.
,
Scheinman
,
M.
, and
Olgin
,
J. E.
,
2008
, “
Impact of Remote Magnetic Catheter Navigation on Ablation Fluoroscopy and Procedure Time
,”
Pacing Clin. Electrophysiol.
,
31
(
11
), pp.
1399
1404
. 10.1111/j.1540-8159.2008.01202.x
14.
Kota
,
S.
,
Lu
,
K.-J.
,
Kreiner
,
Z.
,
Trease
,
B.
,
Arenas
,
J.
, and
Geiger
,
J.
,
2005
, “
Design and Application of Compliant Mechanisms for Surgical Tools
,”
ASME. J Biomech Eng.
,
127
(
6
), pp.
981
989
. 10.1115/1.2056561
15.
Howell
,
L. L.
,
Magleby
,
S. P.
, and
Olsen
,
B. M.
,
2013
,
Handbook of Compliant Mechanisms
,
John Wiley & Sons
,
Hoboken, NJ
.
16.
Gallego
,
J. A.
, and
Herder
,
J.
,
2009
, “
Synthesis Methods in Compliant Mechanisms: An Overview
,”
ASME 2009 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
San Diego, CA
,
Aug. 30–Sept. 2
, pp.
193
214
.
17.
Lobontiu
,
N.
,
2002
,
Compliant Mechanisms: Design of Flexure Hinges
,
CRC Press
,
Boca Raton, FL
.
18.
Yin
,
L.
, and
Ananthasuresh
,
G.
,
2003
, “
Design of Distributed Compliant Mechanisms
,”
Mech. Based Des. Struct. Mach.
,
31
(
2
), pp.
151
179
. 10.1081/SME-120020289
19.
Swaney
,
P. J.
,
Burgner
,
J.
,
Gilbert
,
H. B.
, and
Webster
,
R. J.
,
2012
, “
A Flexure-Based Steerable Needle: High Curvature With Reduced Tissue Damage
,”
IEEE Trans. Biomed. Eng.
,
60
(
4
), pp.
906
909
. 10.1109/TBME.2012.2230001
20.
Chandrasekaran
,
K.
,
Sathuluri
,
A.
, and
Thondiyath
,
A.
,
2017
, “
Magnex—Expendable Robotic Surgical Tooltip
,”
2017 IEEE International Conference on Robotics and Automation (ICRA)
,
Singapore
,
May 29–June 3
,
IEEE
, pp.
4221
4226
.
21.
Chandrasekaran
,
K.
, and
Thondiyath
,
A.
,
2017
, “
Design of a Two Degree-of-Freedom Compliant Tool Tip for a Handheld Powered Surgical Tool
,”
ASME J. Med. Devices
,
11
(
1
), p.
014502
. 10.1115/1.4034879
22.
Kim
,
Y.-J.
,
Cheng
,
S.
,
Kim
,
S.
, and
Iagnemma
,
K.
,
2012
, “
Design of a Tubular Snake-Like Manipulator With Stiffening Capability by Layer Jamming
,”
2012 IEEE/RSJ International Conference on Intelligent Robots and Systems
,
Vilamoura, Portugal
,
Oct. 7–12
,
IEEE
, pp.
4251
4256
.
23.
Kato
,
T.
,
Okumura
,
I.
,
Song
,
S.-E.
,
Golby
,
A. J.
, and
Hata
,
N.
,
2014
, “
Tendon-Driven Continuum Robot for Endoscopic Surgery: Preclinical Development and Validation of a Tension Propagation Model
,”
IEEE/ASME Trans. Mechatron.
,
20
(
5
), pp.
2252
2263
. 10.1109/TMECH.2014.2372635
24.
Leong
,
F.
,
Garbin
,
N.
,
Di Natali
,
C.
,
Mohammadi
,
A.
,
Thiruchelvam
,
D.
,
Oetomo
,
D.
, and
Valdastri
,
P.
,
2016
, “
Magnetic Surgical Instruments for Robotic Abdominal Surgery
,”
IEEE Rev. Biomed. Eng.
,
9
, pp.
66
78
. 10.1109/RBME.2016.2521818
25.
Heunis
,
C.
,
Sikorski
,
J.
, and
Misra
,
S.
,
2018
, “
Flexible Instruments for Endovascular Interventions: Improved Magnetic Steering, Actuation, and Image-Guided Surgical Instruments
,”
IEEE Rob. Automat. Mag.
,
25
(
3
), pp.
71
82
. 10.1109/MRA.2017.2787784
26.
Ernst
,
S.
,
Ouyang
,
F.
,
Linder
,
C.
,
Hertting
,
K.
,
Stahl
,
F.
,
Chun
,
J.
,
Hachiya
,
H.
,
Bänsch
,
D.
,
Antz
,
M.
, and
Kuck
,
K.-H.
,
2004
, “
Initial Experience With Remote Catheter Ablation Using a Novel Magnetic Navigation System: Magnetic Remote Catheter Ablation
,”
Circulation
,
109
(
12
), pp.
1472
1475
. 10.1161/01.CIR.0000125126.83579.1B
27.
Arya
,
A.
,
Zaker-Shahrak
,
R.
,
Sommer
,
P.
,
Bollmann
,
A.
,
Wetzel
,
U.
,
Gaspar
,
T.
,
Richter
,
S.
,
Husser
,
D.
,
Piorkowski
,
C.
, and
Hindricks
,
G.
,
2011
, “
Catheter Ablation of Atrial Fibrillation Using Remote Magnetic Catheter Navigation: A Case–Control Study
,”
Europace
,
13
(
1
), pp.
45
50
. 10.1093/europace/euq344
28.
Davis
,
D. R.
,
Tang
,
A. S.
,
Gollob
,
M. H.
,
Lemery
,
R.
,
Green
,
M. S.
, and
Birnie
,
D. H.
,
2008
, “
Remote Magnetic Navigation-Assisted Catheter Ablation Enhances Catheter Stability and Ablation Success With Lower Catheter Temperatures
,”
Pacing Clin. Electrophysiol.
,
31
(
7
), pp.
893
898
. 10.1111/j.1540-8159.2008.01105.x
29.
Edelmann
,
J.
,
Petruska
,
A. J.
, and
Nelson
,
B. J.
,
2017
, “
Magnetic Control of Continuum Devices
,”
Int. J. Rob. Res.
,
36
(
1
), pp.
68
85
. 10.1177/0278364916683443
30.
Boskma
,
K. J.
,
Scheggi
,
S.
, and
Misra
,
S.
,
2016
, “
Closed-Loop Control of a Magnetically-Actuated Catheter Using Two-Dimensional Ultrasound Images
,”
2016 6th IEEE International Conference on Biomedical Robotics and Biomechatronics (BioRob)
,
Singapore
,
June 26–29
,
IEEE
, pp.
61
66
.
31.
Le
,
V. N.
,
Nguyen
,
N. H.
,
Alameh
,
K.
,
Weerasooriya
,
R.
, and
Pratten
,
P.
,
2016
, “
Accurate Modeling and Positioning of a Magnetically Controlled Catheter Tip
,”
Med. Phys.
,
43
(
2
), pp.
650
663
. 10.1118/1.4939228
32.
Venkiteswaran
,
V. K.
,
Sikorski
,
J.
, and
Misra
,
S.
,
2019
, “
Shape and Contact Force Estimation of Continuum Manipulators Using Pseudo Rigid Body Models
,”
Mech. Mach. Theory
,
139
, pp.
34
45
. 10.1016/j.mechmachtheory.2019.04.008
33.
Chautems
,
C.
,
Tonazzini
,
A.
,
Floreano
,
D.
, and
Nelson
,
B. J.
,
2017
, “
A Variable Stiffness Catheter Controlled With An External Magnetic Field
,”
2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
,
Vancouver, BC, Canada
,
Sept. 24–28
,
IEEE
, pp.
181
186
.
34.
Liu
,
T.
,
Lombard Poirot
,
N.
,
Greigarn
,
T.
, and
Cenk Çavuşoğlu
,
M.
,
2017
, “
Design of a Magnetic Resonance Imaging Guided Magnetically Actuated Steerable Catheter
,”
ASME J. Med. Devices
,
11
(
2
), p.
021004
. 10.1115/1.4036095
35.
Sikorski
,
J.
,
Rutting
,
E. S.
, and
Misra
,
S.
,
2018
, “
Grasping Using Magnetically-Actuated Tentacle Catheter: A Proof-of-Concept Study
,”
2018 7th IEEE International Conference on Biomedical Robotics and Biomechatronics (Biorob)
,
Enschede, Netherlands
,
Aug. 26–29
,
IEEE
, pp.
609
614
.
36.
Howell
,
L.
,
2001
,
Compliant Mechanisms
,
Wiley
,
New York
.
37.
Venkiteswaran
,
V. K.
,
Samaniego
,
L. F. P.
,
Sikorski
,
J.
, and
Misra
,
S.
,
2019
, “
Bio-Inspired Terrestrial Motion of Magnetic Soft Millirobots
,”
IEEE Rob. Automat. Lett.
,
4
(
2
), pp.
1753
1759
. 10.1109/LRA.2019.2898040
38.
ASM Aerospace Specification Metals Inc.
, “
Titanium grade-2
,” http://asm.matweb.com/search/SpecificMaterial.asp?bassnum=MTU020, Accessed March 19, 2020.
You do not currently have access to this content.