Abstract

This article investigates the feasibility of replacing metal robot links by wooden bodies for eco-sustainable design’s purpose. Wood is a material with low environmental impact and a good mass-to-stiffness ratio. However, it has significant dimensional and mechanical variabilities. This is an issue for industrial robots that must be accurate and stiff. To guarantee stiffness and accuracy performance of a wooden robot, we propose an integrated design process combining (i) proper wood selection, (ii) adequate sensor-based control strategies to ensure robot accuracy, and (iii) a robust design approach dealing with wood uncertainties. Based on the use of this integrated design process, a prototype of a wooden five-bar mechanism is designed and manufactured. Experimental results show that it is realistic to design a wooden robot with performance compatible with industry requirements in terms of stiffness (deformations lower than 400 μm for 20 N loads) and accuracy (repeatability lower than 60 μm), guaranteed in a workspace of 800 mm × 200 mm. This study provides a first step toward the eco-sustainable mechanical design of robots.

References

1.
Carro Fernandez
,
G.
,
Martin Gutierrez
,
S.
,
Sancristobal Ruiz
,
E.
,
Mur Perez
,
F.
, and
Castro Gil
,
M.
,
2012
, “
Robotics, the New Industrial Revolution
,”
IEEE Technol. Soc. Magazine
,
31
(
2
), pp.
51
58
. 10.1109/MTS.2012.2196595
2.
Yang
,
G.
,
Bellingham
,
J.
,
Dupont
,
P.
,
Fischer
,
P.
,
Floridi
,
L.
,
Full
,
R.
,
Jacobstein
,
N.
,
Kumar
,
V.
,
McNutt
,
M.
,
Merrifield
,
R.
,
Nelson
,
B.
,
Scassellati
,
B.
,
Taddeo
,
M.
,
Taylor
,
R.
,
Veloso
,
M.
,
Lin Wang
,
Z.
, and
Wood
,
R.
,
2018
, “
The Grand Challenges of Science Robotics
,”
Sci. Robot.
,
3
(
14
), pp.
1
14
. 10.1126/scirobotics.aar7650
3.
Galitsky
,
C.
, and
Worrell
,
E.
,
2008
, “
Energy Efficiency Improvement and Cost Saving Opportunities for Thevehicle Assembly Industry
,”
U.S. Environmental Protection Agency
,
Berkeley
,
Technical Report No. LBNL-50939R
.
4.
Chaudhary
,
H.
, and
Saha
,
S.
,
2009
,
Dynamics and Balancing of Multibody Systems
,
Springer
,
New York
.
5.
Kim
,
Y.
,
2017
, “
Anthropomorphic Low-Inertia High-Stiffness Manipulator for High-Speed Safe Interaction
,”
IEEE Trans. Robot.
,
33
(
6
), pp.
1358
1374
. 10.1109/TRO.2017.2732354
6.
Chung
,
W.
,
Fu
,
L.
, and
Hsu
,
S.
,
2016
,
Handbook of Robotics
, 2nd ed.,
Springer-Verlag
,
Berlin Heidelberg
, Chap. 8: Motion Control, pp.
163
194
.
7.
Chettibi
,
T.
,
Lehtihet
,
H. E.
,
Haddad
,
M.
, and
Hanchi
,
S.
,
2004
, “
Minimum Cost Trajectory Planning for Industrial Robots
,”
Euro. J. Mech. A/Solids
,
23
(
4
), pp.
703
715
. 10.1016/j.euromechsol.2004.02.006
8.
Ieropoulos
,
I.
,
Greenman
,
J.
,
Melhuish
,
C.
, and
Horsfield
,
I.
,
2010
, “
EcoBot-III: A Robot With Guts
,”
Artificial Life X: Proceedings of the Twelfth International Conference on the Synthesis and Simulation of Living Systems
,
Odense, Denmark
,
Aug. 19–23
, pp.
733
740
.
9.
Mei
,
Y.
,
Lu
,
Y.
,
Hu
,
Y.
, and
Lee
,
C.
,
2005
, “
A Case Study of Mobile Robot’s Energy Consumption and Conservation Techniques
,”
Proceedings of the 12th International Conference on Advanced Robotics
,
Seattle, WA
,
July 17–20
, pp.
492
497
.
10.
Verstraten
,
T.
,
Beckerle
,
P.
,
Furnémont
,
R.
,
Mathijssen
,
G.
,
Vanderborght
,
B.
, and
Lefeber
,
D.
,
2016
, “
Series and Parallel Elastic Actuation: Impact of Natural Dynamics on Power and Energy Consumption
,”
Mech. Mach. Theory.
,
102
, pp.
232
246
. 10.1016/j.mechmachtheory.2016.04.004
11.
Norm ISO 14040
,
2006
, “
Environmental Management—Life Cycle Assessment—Principles and Framework
.”
12.
Norm ISO 14044
,
2006
, “
Environmental Management—Life Cycle Assessment—Requirements and Guidelines
.”
13.
Fizians
,
2015
, “
Eco-Design of Two Types of Robots: KUKA 270 and IRSbot-2
,”
Technical Report, Fizians, Rennes, France
.
14.
Thakur
,
V.
,
2013
,
Green Composites From Natural Resources
,
CRC Press
,
Boca Raton, FL
.
15.
Falk
,
R. H.
,
2010
,
Wood Handbook
,
United States Department of Agriculture
,
Madison, WI
, Chap. 1: Wood as a sustainable building material,
1
6
.
16.
Norm EN 338
,
2016
, “
Structural Timber—Strength Classes
.”
17.
Shintake
,
J.
,
Sonar
,
H.
,
Piskarev
,
E.
,
Paik
,
J.
, and
Floreano
,
D.
,
2017
, “
Soft Pneumatic Gelatin Actuator for Edible Robotics
,”
Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems
,
Vancouver, Canada
,
Sept. 24–28
.
18.
Ricotti
,
L.
,
Trimmer
,
B.
,
Feinberg
,
A. W.
,
Raman
,
R.
,
Parker
,
K. K.
,
Bashir
,
R.
,
Sitti
,
M.
,
Martel
,
S.
,
Dario
,
P.
, and
Menciassi
,
A.
,
2017
, “
Biohybrid Actuators for Robotics: A Review of Devices Actuated by Living Cells
,”
Sci. Robot.
,
2
(
12
), pp.
1
17
. 10.1126/scirobotics.aaq0495
19.
Irimia-Vladu
,
M.
,
Troshin
,
P. A.
,
Reisinger
,
M.
,
Shmygleva
,
L.
,
Kanbur
,
Y.
,
Schwabegger
,
G.
,
Bodea
,
M.
,
Schwdiauer
,
R.
,
Mumyatov
,
A.
,
Fergus
,
J. W.
,
Razumov
,
V. F.
,
Sitter
,
H.
,
Sariciftci
,
N. S.
, and
Bauer
,
S.
,
2010
, “
Biocompatible and Biodegradable Materials for Organic Field-effect Transistors
,”
Adv. Funct. Mater.
,
20
(
23
), pp.
4069
4076
. 10.1002/adfm.201001031
20.
Hamann
,
H.
,
Wahby
,
M.
,
Schmickl
,
T.
,
Zahadat
,
P.
,
Hofstadler
,
D.
,
Stoy
,
K.
,
Risi
,
S.
,
Faina
,
A.
,
Veenstra
,
F.
,
Kernbach
,
S.
,
Kuksin
,
I.
,
Kernbach
,
O.
,
Ayres
,
P.
, and
Wojtaszek
,
P.
,
2015
, “
Flora Robotica—Mixed Societies of Symbiotic Robot-Plant Bio-hybrids
,”
Proceedings of the IEEE Symposium on Artificial Life
,
Cape Town. South Africa
,
Dec. 7–10
, pp.
1102
1109
.
21.
Laurent
,
T.
,
Kergueme
,
J.
,
Arnould
,
O.
, and
Dureisseix
,
D.
,
2010
, “
Vers Un Robot En Bois: Première Partie
,”
Technologies
,
168
, pp.
28
36
(
in French
).
22.
Laurent
,
T.
,
Kergueme
,
J.-L.
,
Arnould
,
O.
, and
Dureisseix
,
D.
,
2010
, “
Vers Un Robot En Bois. Seconde Partie
,”
Technologies
,
169
, pp.
24
35
(
in French
).
23.
Csiszar
,
A.
,
Sommer
,
P.
, and
Lechler
,
A.
,
2015
, “
EcoBotics: Advantages and Challenges of Building a Bamboo Robot Arm
,”
Proceedings of the IEEE International Conference on Industrial Technology
,
Seville, Spain
,
Mar. 17–19
.
24.
Nguyen
,
A.
,
Béakou
,
A.
,
Charlet
,
K.
, and
Bouzgarrou
,
B.
,
2014
, “
Optimal-Design of Lightweight Mechanism Links Made of Hybrid Laminate Composite
,”
Proceedings of the International Symposium on Green Manufacturing and Applications
,
Busan, South Korea
,
June 24–28
.
25.
NGuyen
,
A.
,
2015
, “
Matériaux composites à renfort végétal pour l’amélioration des performances de systèmes robotiques
,” PhD thesis,
Institut Pascal
,
Clermont-Ferrand
.
26.
Kretschmann
,
D.
,
2010
,
Ch. 5: Mechanical Properties of Wood
,
Forest Products Laboratory, United States Department of Agriculture Forest Service
,
Madison, WI
.
27.
Wang
,
C.
, and
Piao
,
C.
,
2011
, “
From Hydrophilicity to Hydrophobicity: A Critical Review
,”
Wood Fibre Sci.
,
42
(
4
), pp.
490
510
.
28.
Célino
,
A.
,
Fréour
,
S.
,
Jacquemin
,
F.
, and
Casari
,
P.
,
2014
, “
The Hygroscopic Behavior of Plant Fibers: A Review
,”
Front. Polymer Chem.
,
43
(
1
), pp.
1
12
. 10.3389/fchem.2013.00043
29.
Corbel
,
D.
,
Company
,
O.
,
Krut
,
S.
, and
Pierrot
,
F.
,
2010
, “
Enhancing PKM Accuracy by Separating Actuation and Measurement: A 3DOF Case Study
,”
J. Mech. Robot.
,
2
(
3
), pp.
1
11
. 10.1115/1.4001779
30.
Asadpoure
,
A.
,
Tootkaboni
,
M.
, and
Guest
,
J.
,
2011
, “
Robust Topology Optimization of Structures With Uncertainties in Stiffness—Application to Truss Structures
,”
Comput. Struct.
,
89
(
11–12
), pp.
1131
1141
. 10.1016/j.compstruc.2010.11.004
31.
Kaci
,
L.
,
Briot
,
S.
,
Boudaud
,
C.
, and
Martinet
,
P.
,
2018
, “
RobEcolo: Optimal Design of a Wooden Five-Bar Mechanism
,”
Proceedings of the ASME International Design Engineering Technical Conferences & Computers and Information in Engineering Conference
,
Québec City, Canada
,
Aug. 26–29
.
32.
Briot
,
S.
,
Pashkevich
,
A.
, and
Chablat
,
D.
,
2010
, “
Technology-Oriented Optimization of the Secondary Design Parameters of Robots for High-Speed Machining Applications
,”
Proceedings of the ASME International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Montreal, Quebec, Canada
,
Aug. 15–18
.
33.
Verco
,
2013
, “
Accoya Wood 2012 Cradle-to-Gate Carbon Footprint Update
,”
Technical Report, Accsys Technologies, Arnhem, The Netherlands
.
34.
van der Lugt
,
P.
,
Bongers
,
F.
, and
Vogtlander
,
J.
,
2016
, “
Environmental Impact of Constructions Made of Acetylated Wood
,”
Proceedings of the World Conference on Timber Engineering
,
Vienna, Austria
,
Aug. 22–25
.
35.
Chaumette
,
F.
, and
Hutchinson
,
S.
,
2008
,
Ch. 24: Visual Servoing and Visual Tracking
,
Springer
,
New York
.
36.
Andreff
,
N.
,
Dallej
,
T.
, and
Martinet
,
P.
,
2007
, “
Image-Based Visual Servoing of Gough-Stewart Parallel Manipulators Using Legs Observation
,”
Inter. J. Robot. Res.
,
26
(
7
), pp.
677
687
. 10.1177/0278364907080426
37.
Briot
,
S.
,
Rosenzveig
,
V.
,
Martinet
,
P.
,
Özgür
,
E.
, and
Bouton
,
N.
,
2016
, “
Minimal Representation for the Control of Parallel Robots Via Leg Observation Considering a Hidden Robot Model
,”
Mech. Mach. Theory.
,
106
, pp.
115
147
. 10.1016/j.mechmachtheory.2016.08.013
38.
Briot
,
S.
,
Caro
,
S.
, and
Germain
,
C.
,
2017
, “
Design Procedure for a Fast and Accurate Parallel Manipulator
,”
ASME. J. Mech. Rob.
,
9
(
6
), p.
061012
. 10.1115/1.4038009
39.
Merlet
,
J.
,
2006
,
Parallel Robots
, 2nd ed.,
Springer
,
New York
.
40.
International Federation of Robotics (IFR)
.”
41.
Campos
,
L.
,
Bourbonais
,
F.
,
Bonev
,
I.
, and
Bigras
,
P.
,
2010
, “
Development of a Five-Bar Parallel Robot With Large Workspace
,”
Proceedings of the ASME International Design Engineering Technical Conferences
,
Montreal, Quebec, Canada
,
Aug. 15–18
.
42.
Khalil
,
W.
, and
Dombre
,
E.
,
2002
,
Modeling, Identification and Control of Robots
,
Hermes Penton
,
London
.
43.
Briot
,
S.
, and
Gautier
,
M.
,
2015
, “
Global Identification of Joint Drive Gains and Dynamic Parameters of Parallel Robots
,”
Multibody Syst. Dyn.
,
33
(
1
), pp.
3
26
. 10.1007/s11044-013-9403-6
44.
Chaumette
,
F.
, and
Hutchinson
,
S.
,
2006
, “
Visual Servo Control Part I: Basic Approaches
,”
IEEE Robot. Auto. Mag.
,
13
(
4
), pp.
82
90
. 10.1109/MRA.2006.250573
45.
Andreff
,
N.
,
Espiau
,
B.
, and
Horaud
,
R.
,
2002
, “
Visual Servoing From Lines
,”
Inter. J. Robot. Res.
,
21
(
8
), pp.
679
700
. 10.1177/027836402761412430
46.
Chaumette
,
F.
,
2004
, “
Image Moments: A General and Useful Set of Features for Visual Servoing
,”
IEEE Trans. Robot.
,
20
(
4
), pp.
713
723
. 10.1109/TRO.2004.829463
47.
Vignolo
,
A.
,
Briot
,
S.
,
Martinet
,
P.
, and
Chen
,
C.
,
2014
, “
Comparative Analysis of Two Types of Leg-Observation-Based Visual Servoing Approaches for the Control of the Five-Bar Mechanism
,”
Proceedings of the Australasian Conference on Robotics and Automation
,
Melbourne, Australia
,
Dec. 2–4
.
48.
Chaumette
,
F.
, and
Hutchinson
,
S.
,
2007
, “
Visual Servo Control, Part II: Advanced Approaches
,”
IEEE Robot. Auto. Mag.
,
14
(
1
), pp.
109
118
. 10.1109/MRA.2007.339609
49.
Traslosheros
,
A.
,
Sebastian
,
J.
,
Angel
,
L.
,
Roberti
,
F.
, and
Carelliz
,
R.
,
2007
, “
Visual Servoing of a Parallel Robot System
,”
Proceedings of the European Control Conference
,
Kos, Greece
,
July 2–5
.
50.
Shi
,
B.
,
Zhao
,
H.
,
Ben-Ezra
,
M.
,
Yeung
,
S.
,
Fernandez-Cull
,
C.
,
Shepard
,
R.
,
Barsi
,
C.
, and
Raskar
,
R.
,
2014
, “
Sub-Pixel Layout for Super-Resolution With Images in the Octic Group
,”
Proceedings of the European Conference on Computer Vision
,
Zurich, Switzerland
,
Sept. 2–6
.
51.
Gosselin
,
C.
, and
Angeles
,
J.
,
1990
, “
Singularity Analysis of Closed-Loop Kinematic Chains
,”
IEEE. Trans. Rob. Autom.
,
6
(
3
), pp.
281
290
. 10.1109/70.56660
52.
Gosselin
,
C.
, and
Angeles
,
J.
,
1991
, “
A Global Performance Index for the Kinematic Optimization of Robotic Manipulators
,”
ASME. J. Mech. Des.
,
113
(
3
), pp.
220
226
. 10.1115/1.2912772
53.
Cammarata
,
A.
, and
Sinatra
,
R.
,
2014
, “
Elastodynamic Optimization of a 3T1R Parallel Manipulator
,”
Mech. Mach. Theory.
,
73
, pp.
184
196
. 10.1016/j.mechmachtheory.2013.10.010
54.
Shabana
,
A.
,
2005
,
Dynamics of Multibody Systems
,
Cambridge University Press
,
Cambridge, UK
.
55.
Sigmund
,
O.
, and
Maute
,
K.
,
2013
, “
Topology Optimization Approaches: A Comparative Review
,”
Struct. Multidisc. Optim.
,
48
(
6
), pp.
1031
1055
. 10.1007/s00158-013-0978-6
56.
Briot
,
S.
, and
Goldsztejn
,
A.
,
2018
, “
Topology Optimization of Industrial Robots: Application to a Five-Bar Mechanism
,”
Mech. Mach. Theory.
,
120
, pp.
30
56
. 10.1016/j.mechmachtheory.2017.09.011
57.
Albers
,
A.
,
Ottnad
,
J.
, and
Häussler
,
W.
,
2007
, “
Methods for Lightweight Design of Mechanical Components in Humanoid Robots
,”
Proceedings of the 7th IEEE-RAS International Conference on Humanoid Robots
,
Pittsburgh, PA
,
Nov. 29–Dec. 1
, pp.
609
615
.
58.
Albers
,
A.
, and
Ottnad
,
J.
,
2008
, “
System Based Topology Optimization as Development Tools for Lightweight Components in Humanoid Robots
,”
Proceedings of the 8th IEEE-RAS International Conference on Humanoid Robots
,
Daejeon, South Korea
,
Dec. 1–3
, pp.
674
680
.
59.
Kim
,
B.
,
Yun
,
D.
,
Lee
,
S.
, and
Jang
,
G.
,
2016
, “
Topology Optimization of Industrial Robots for System-level Stiffness Maximization by Using Part-level Metamodels
,”
Struct. Multidisc. Optim.
,
54
, pp.
1061
1071
. 10.1007/s00158-016-1446-x
60.
Bendsoe
,
M.
, and
Sigmund
,
O.
,
1999
, “
Material Interpolation Schemes in Topology Optimization
,”
Archive of Applied Mechanics
,
69
, pp.
635
654
.
61.
Craig
,
R. R.
, and
Bampton
,
M. C. C.
,
1968
, “
Coupling of Substructures for Dynamic Analysis
,”
AIAA J.
,
6
(
7
), pp.
1313
1319
. 10.2514/3.4741
62.
Norm EN 14358
,
2016
, “
Timber Structures. Calculation and Verification of Characteristic Values
.”
63.
Kaci
,
L.
,
2018
, “
Conception Et Commande D’un Robot Industriel En Bois
,” Ph.D. thesis,
Ecole Centrale Nantes
,
Nantes, France
.
64.
Pagis
,
G.
,
Bouton
,
N.
,
Briot
,
S.
, and
Martinet
,
P.
,
2015
, “
Enlarging Parallel Robot Workspace Through Type-2 Singularity Crossing
,”
Control. Eng. Pract.
,
39
, pp.
1
11
. 10.1016/j.conengprac.2015.01.009
65.
Pshenichnyj
,
B.
,
1994
,
The Linearization Method for Constrained Optimization
(
Computational Mathematics
),
Springer
,
New York
.
66.
Paccot
,
F.
,
Andreff
,
N.
, and
Martinet
,
P.
,
2009
, “
A Review on the Dynamic Control of Parallel Kinematic Machines: Theory and Experiments
,”
Inter. J. Robot. Res.
,
28
(
3
), pp.
395
416
. 10.1177/0278364908096236
67.
Thais Colombo
,
F.
,
de Carvalho Fontes
,
J.
, and
da Silva
,
M.
,
2019
, “
A Visual Servoing Strategy Under Limited Frame Rates for Planar Parallel Kinematic Machines
,”
J. Intel. Robot. Syst.
,
96
(
1
), pp.
95
107
. 10.1007/s10846-019-00982-7
68.
Marchand
,
E.
, and
Chaumette
,
F.
,
2001
, “
A New Formulation for Non-Linear Camera Calibration Using Virtual Visual Servoing
,”
INRIA
,
Technical Report, Report No. RR-4096
.
69.
Marchand
,
E.
,
Spindler
,
F.
, and
Chaumette
,
F.
,
2005
, “
ViSP for Visual Servoing: A Generic Software Platformwith a Wide Class of Robot Control Skills
,”
IEEE Robot. Autom. Magazine
,
12
(
4
), pp.
40
52
. 10.1109/mra.2005.1577023
70.
Visual Servoing Plateform (ViSP)
, “
Tutorial: How to Boost Your Visual Servo Control Law
,”
Technical Report, INRIA
,
Rennes, France
.
71.
Mansard
,
N.
, and
Chaumette
,
F.
,
2007
, “
Task Sequencing for High-Level Sensor-Based Control
,”
IEEE Trans. Robot.
,
23
(
1
), pp.
60
72
. 10.1109/TRO.2006.889487
72.
Uemura
,
M.
, and
Kawamura
,
S.
,
2009
, “
Resonance-Based Motion Control Method for Multijoint Robot Through Combining Stiffness Adaptation and Iterative Learning Control
,”
Proceedings of the IEEE International Conference on Robotics and Automation
,
Kobe, Japan
,
May 12–17
, pp.
1543
1548
.
73.
Riazi
,
S.
,
Bengtsson
,
K.
,
Bischoff
,
R.
,
Aurnhammer
,
A.
,
Wigström
,
O.
, and
Lennartson
,
B.
,
2016
, “
Energy and Peak-Power Optimization of Existing Time-Optimal Robot Trajectories
,”
Proceedings of the IEEE International Conference on Automation Science and Engineering
,
Fort Worth, TX
,
Aug. 21–25
.
74.
Vaughan
,
J.
,
Yano
,
A.
, and
Singhose
,
W. E.
,
2009
, “
Robust Negative Input Shapers for Vibration Suppression
,”
ASME J. Dyn. Syst. Measure. Control
,
131
(
3
), p.
031014
. 10.1115/1.3072155
75.
Douat
,
L.
,
Queinnec
,
I.
,
Garcia
,
G.
,
Michelin
,
M.
, and
Pierrot
,
F.
,
2011
, “
Hinfiny Control Applied to the Vibration Minimization of the Parallel Robot Par2
,”
IEEE Multiconference on Systems and Control
,
Denver, CO
,
Sept. 28–30
.
76.
Hryshaienko
,
O.
,
2018
, “
RobEcolo: Life Cycle Analysis
,”
LS2N, Technical Report
,
Nantes, France
.
You do not currently have access to this content.