Abstract

This paper presents the design and preliminary evaluation of a quasi-passive lower limb exoskeleton for walking efficiency improvements. The exoskeleton recycles the negative work performed by the knee joint in late swing phase and the ankle joint in mid-stance phase, to assist ankle push-off in late-stance phase when a burst of positive power is needed. The exoskeleton consists of a torsion spring as an energy storage element, and two clutches attached to both ends of the spring to control the timing of recycling and releasing energy in a gait cycle. The two clutches are actively controlled by two small servo motors with very low power consumption based on the plantar pressure. The novelty of this exoskeleton is it makes the extra kinetic energy dissipated at the knee joint reusable, by transferring it to the ankle joint to assist positive power generation during push-off, for the first time. Eight male subjects walked with the exoskeleton engaged (EXO_ON), disengaged (EXO_OFF), and without the exoskeleton (NO_EXO). Inverse dynamics analysis demonstrated reduced negative biological work at the knee joint during late swing and at the ankle joint during mid stance, as well as reduced positive biological work at the ankle joint during late stance comparing the EXO_ON to EXO_OFF conditions. These results prove the effectiveness of the exoskeleton at joint level.

References

1.
Dollar
,
A. M.
, and
Herr
,
H.
,
2008
, “
Lower Extremity Exoskeletons and Active Orthoses: Challenges and State-of-the-Art
,”
IEEE Trans. Rob.
,
24
(
1
), pp.
144
158
. 10.1109/TRO.2008.915453
2.
Levine
,
D.
,
Richard
,
J.
, and
Whittle
,
M.
,
2012
,
Whittle's Gait Analysis
, 5th ed.,
Churchill Livingstone, Elsevier
,
London
.
3.
Walsh
,
C. J.
,
Endo
,
K.
, and
Herr
,
H.
,
2007
, “
A Quasi-Passive Leg Exoskeleton for Load-Carrying Augmentation
,”
Int. J. Humanoid Rob.
,
4
(
3
), pp.
487
506
. 10.1142/S0219843607001126
4.
Abbott
,
B.
,
Bigland
,
B.
, and
Ritchie
,
J.
,
1952
, “
The Physiological Cost of Negative Work
,”
J. Physiol.
,
117
(
3
), pp.
380
390
. 10.1113/jphysiol.1952.sp004755
5.
Ishikawa
,
M.
,
Komi
,
P. V.
,
Grey
,
M. J.
,
Lepola
,
V.
, and
Bruggemann
,
G. P.
,
2005
, “
Muscle-Tendon Interaction and Elastic Energy Usage in Human Walking
,”
J. Appl. Physiol. (1985)
,
99
(
2
), pp.
603
608
. 10.1152/japplphysiol.00189.2005
6.
Sawicki
,
G. S.
,
Lewis
,
C. L.
, and
Ferris
,
D. P.
,
2009
, “
It Pays to Have a Spring in Your Step
,”
Exercise Sport Sci. Rev.
,
37
(
3
), p.
130
. 10.1097/JES.0b013e31819c2df6
7.
van Dijk
,
W.
, and
Van der Kooij
,
H.
,
2014
, “
Xped2: A Passive Exoskeleton With Artificial Tendons
,”
IEEE Rob. Autom. Mag.
,
21
(
4
), pp.
56
61
. 10.1109/MRA.2014.2360309
8.
Collins
,
S. H.
,
Wiggin
,
M. B.
, and
Sawicki
,
G. S.
,
2015
, “
Reducing the Energy Cost of Human Walking Using An Unpowered Exoskeleton
,”
Nature
,
522
(
7555
), pp.
212
215
. 10.1038/nature14288
9.
Elliott
,
G.
,
Marecki
,
A.
, and
Herr
,
H.
,
2014
, “
Design of a Clutch–Spring Knee Exoskeleton for Running
,”
ASME J. Med. Devices
,
8
(
3
), p.
031002
. 10.1115/1.4027841
10.
Cherry
,
M. S.
,
Kota
,
S.
, and
Ferris
,
D. P.
,
2009
, “
An Elastic Exoskeleton for Assisting Human Running
,”
ASME 2009 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
San Diego, CA
,
Aug. 30–Sept. 2
, pp.
727
738
.
11.
Shamaei
,
K.
,
Cenciarini
,
M.
,
Adams
,
A. A.
,
Gregorczyk
,
K. N.
,
Schiffman
,
J. M.
, and
Dollar
,
A. M.
,
2014
, “
Design and Evaluation of a Quasi-Passive Knee Exoskeleton for Investigation of Motor Adaptation in Lower Extremity Joints
,”
IEEE Trans. Biomed. Eng.
,
61
(
6
), pp.
1809
1821
. 10.1109/TBME.2014.2307698
12.
Mooney
,
L. M.
,
Rouse
,
E. J.
, and
Herr
,
H. M.
,
2014
, “
Autonomous Exoskeleton Reduces Metabolic Cost of Human Walking During Load Carriage
,”
J. NeuroEng. Rehab.
,
11
(
1
), p.
80
. 10.1186/1743-0003-11-80
13.
Panizzolo
,
F. A.
,
Galiana
,
I.
,
Asbeck
,
A. T.
,
Siviy
,
C.
,
Schmidt
,
K.
,
Holt
,
K. G.
, and
Walsh
,
C. J.
,
2016
, “
A Biologically-Inspired Multi-Joint Soft Exosuit that Can Reduce the Energy Cost of Loaded Walking
,”
J. NeuroEng. Rehab.
,
13
(
1
), p.
43
. 10.1186/s12984-016-0150-9
14.
Jackson
,
R. W.
, and
Collins
,
S. H.
,
2015
, “
An Experimental Comparison of the Relative Benefits of Work and Torque Assistance in Ankle Exoskeletons
,”
J. Appl. Physiol.
,
119
(
5
), pp.
541
557
. 10.1152/japplphysiol.01133.2014
15.
Malcolm
,
P.
,
Derave
,
W.
,
Galle
,
S.
, and
De Clercq
,
D.
,
2013
, “
A Simple Exoskeleton that Assists Plantarflexion Can Reduce the Metabolic Cost of Human Walking
,”
PLoS One
,
8
(
2
), p.
e56137
. 10.1371/journal.pone.0056137
16.
Liu
,
J.
,
Xiong
,
C.
, and
Fu
,
C.
,
2019
, “
An Ankle Exoskeleton Using a Lightweight Motor to Create High Power Assistance for Push-Off
,”
ASME J. Mech. Rob.
,
11
(
4
), p.
041001
. 10.1115/1.4043456
17.
Zhang
,
J.
,
Fiers
,
P.
,
Witte
,
K. A.
,
Jackson
,
R. W.
,
Poggensee
,
K. L.
,
Atkeson
,
C. G.
, and
Collins
,
S. H.
,
2017
, “
Human-in-the-Loop Optimization of Exoskeleton Assistance During Walking
,”
Science
,
356
(
6344
), pp.
1280
1284
. 10.1126/science.aal5054
18.
Garcia
,
M.
,
Chatterjee
,
A.
,
Ruina
,
A.
, and
Coleman
,
M.
,
1998
, “
The Simplest Walking Model: Stability, Complexity, and Scaling
,”
ASME J. Biomech. Eng.
,
120
(
2
), pp.
281
288
. 10.1115/1.2798313
19.
Kuo
,
A. D.
,
Donelan
,
J. M.
, and
Ruina
,
A.
,
2005
, “
Energetic Consequences of Walking Like An Inverted Pendulum: Step-to-Step Transitions
,”
Exercise Sport Sci. Rev.
,
33
(
2
), pp.
88
97
. 10.1097/00003677-200504000-00006
20.
Wu
,
Y.
,
Chen
,
K.
, and
Fu
,
C.
,
2016
, “
Effects of Load Connection Form on Efficiency and Kinetics of Biped Walking
,”
ASME J. Mech. Rob.
,
8
(
6
), p.
061015
. 10.1115/1.4034464
21.
Gottschall
,
J. S.
, and
Kram
,
R.
,
2005
, “
Energy Cost and Muscular Activity Required for Leg Swing During Walking
,”
J. Appl. Physiol. (1985)
,
99
(
1
), pp.
23
30
. 10.1152/japplphysiol.01190.2004
22.
Ryschon
,
T.
,
Fowler
,
M.
,
Wysong
,
R.
,
Anthony
,
A.-R.
, and
Balaban
,
R.
,
1997
, “
Efficiency of Human Skeletal Muscle in Vivo: Comparison of Isometric, Concentric, and Eccentric Muscle Action
,”
J. Appl. Physiol.
,
83
(
3
), pp.
867
874
. 10.1152/jappl.1997.83.3.867
23.
Li
,
Q.
,
Naing
,
V.
, and
Donelan
,
J. M.
,
2009
, “
Development of a Biomechanical Energy Harvester
,”
J. NeuroEng. Rehab.
,
6
(
1
), p.
22
. 10.1186/1743-0003-6-22
24.
Asbeck
,
A. T.
,
De Rossi
,
S. M.
,
Galiana
,
I.
,
Ding
,
Y.
, and
Walsh
,
C. J.
,
2014
, “
Stronger, Smarter, Softer: Next-Generation Wearable Robots
,”
IEEE Rob. Autom. Mag.
,
21
(
4
), pp.
22
33
. 10.1109/MRA.2014.2360283
25.
Wiggin
,
M. B.
,
Sawicki
,
G. S.
, and
Collins
,
S. H.
,
2011
, “
An Exoskeleton Using Controlled Energy Storage and Release to Aid Ankle Propulsion
,”
2011 IEEE International Conference on Rehabilitation Robotics
,
Zurich, Switzerland
,
June 29–July 1
, pp.
1
5
.
26.
Hirokawa
,
S.
,
Solomonow
,
M.
,
Luo
,
Z.
,
Lu
,
Y.
, and
D’ambrosia
,
R.
,
1991
, “
Muscular Co-Contraction and Control of Knee Stability
,”
J. Electromyography Kinesiology
,
1
(
3
), pp.
199
208
. 10.1016/1050-6411(91)90035-4
27.
Kadaba
,
M. P.
,
Ramakrishnan
,
H.
, and
Wootten
,
M.
,
1990
, “
Measurement of Lower Extremity Kinematics During Level Walking
,”
J. Orthop. Res.
,
8
(
3
), pp.
383
392
. 10.1002/jor.1100080310
28.
De Leva
,
P.
,
1996
, “
Adjustments to Zatsiorsky-Seluyanov’s Segment Inertia Parameters
,”
J. Biomech.
,
29
(
9
), pp.
1223
1230
. 10.1016/0021-9290(95)00178-6
29.
Kane
,
T. R.
, and
Levinson
,
D. A.
,
1985
,
Dynamics: Theory and Applications
,
McGraw Hill
,
New York
.
30.
Lee
,
Y.
,
Kim
,
Y.-J.
,
Lee
,
J.
,
Lee
,
M.
,
Choi
,
B.
,
Kim
,
J.
,
Park
,
Y. J.
, and
Choi
,
J.
,
2017
, “
Biomechanical Design of a Novel Flexible Exoskeleton for Lower Extremities
,”
IEEE/ASME Trans. Mechatron.
,
22
(
5
), pp.
2058
2069
. 10.1109/TMECH.2017.2718999
31.
Woodward
,
R. B.
,
Shefelbine
,
S. J.
, and
Vaidyanathan
,
R.
,
2017
, “
Pervasive Monitoring of Motion and Muscle Activation: Inertial and Mechanomyography Fusion
,”
IEEE/ASME Trans. Mechatron.
,
22
(
5
), pp.
2022
2033
. 10.1109/TMECH.2017.2715163
32.
Hao
,
M.
,
Chen
,
K.
, and
Fu
,
C.
,
2019
, “
Smoother-Based 3-d Foot Trajectory Estimation Using Inertial Sensors
,”
IEEE Trans. Biomed. Eng.
,
66
(
12
), pp.
3534
3542
. 10.1109/TBME.2019.2907322
You do not currently have access to this content.