Abstract

Impact forces are a destructive, yet common occurrence in legged locomotion. Every step produces a collision when the leg’s inertia stops as a result of ground contact. This results in peak forces and high-frequency vibrations that resonate through the system, damage components, and complicate control algorithms. Prior research considers how damping material, such as rubber, mitigates these effects. However, this paper shows the benefits of spring protection where both stiffness and maximum compression are customized to the leg. The spring mitigates the impact force peak by gradually bringing the leg’s inertia to rest. The maximum compression point (i.e., a hard stop) then provides a rigid surface that is ideal for stance. We provide a foot design methodology, validated through simulation and physical testing, that first considers springs in isolation, then in tandem with damping. We show that the coupling of springs and dampers reduces rigid body collisions and foot vibrations in a way that traditional methods—reliant on damping—have yet to achieve.

References

1.
Arslan
,
Ö.
, “
2008
.
Spring Loaded Inverted Pendulum (SLIP) Approximate Stance Map for Nonsymmetric Motions and Variable Stiffness
,” Ph.D. thesis,
Bilkent University
,
Ankara, Turkey
.
2.
Geyer
,
H.
,
Seyfarth
,
A.
, and
Blickhan
,
R.
,
2006
, “
Compliant Leg Behavior Explains Basic Dynamics of Walking and Running
,”
Proceedings of the Royal Society B
,
273
, pp.
2861
2867
. 10.1098/rspb.2006.3637
3.
Choi
,
W.
,
Zhou
,
C.
,
Medrano-Cerda
,
G.
,
Caldwell
,
D.
, and
Tsagarakis
,
N.
,
2015
, “
A New Foot Sole Design for Humanoids Robots Based on Viscous Air Damping Mechanism
,”
IEEE/RSJ International Conference on Intelligent Robots and Systems
,
Hamburg, Germany
,
Oct. 2
, pp.
4498
4503
.
4.
Wu
,
B.
,
Shen
,
F.
,
Ren
,
Y.
,
Luo
,
J.
, and
Wu
,
Z.
,
2012
, “
Development of An Integrated Perceptual Foot System for Humanoid Robots
,”
Int. J. Rob. Autom.
,
27
(
2
), pp.
217
228
.
5.
Yamaguchi
,
J.
,
Takanishi
,
A.
, and
Kato
,
I.
,
1995
, “
Experimental Development of a Foot Mechanism With Shock Absorbing Material for Acquisition of Landing Surface Position Information and Stabilization of Dynamic Biped Walking
,”
IEEE International Conference on Robotics and Automation
,
Tokyo, Japan
pp.
2892
2899
.
6.
Hirose
,
M.
, and
Ogawa
,
K.
,
2007
, “
Honda Humanoid Robots Development
,”
Philos. Trans. R. Soc. A
,
365
, pp.
11
19
. 10.1098/rsta.2006.1917
7.
Kaneko
,
K.
,
Harada
,
K.
,
Kanehiro
,
F.
,
Miyamori
,
G.
, and
Akachi
,
K.
,
2008
, “
Humanoid Robot HRP-3
,”
IEEE/RSJ International Conference on Intelligent Robots and Systems
,
Nice, France
,
Sept. 22–26
, pp.
2471
2478
.
8.
Muller
,
V.
, and
Hoffmann
,
M.
,
2017
, “
What is Morphological Computation? On How the Body Contributes to Cognition and Control
,”
Artif. Life
,
23
(
1
), pp.
1
24
. 10.1162/ARTL_a_00219
9.
Paul
,
C.
,
2006
, “
Morphological Computation: A Basis for the Analysis of Morphology and Control Requirements
,”
Rob. Autonomous Syst.
,
54
(
8
), pp.
619
630
. 10.1016/j.robot.2006.03.003
10.
Alexander
,
R.
,
1988
, “Suspension Springs and Shock Absorbers,”
Elastic Mechanisms in Animal Movement
.
Cambridge University Press
,
New York, NY
, pp.
98
104
.
11.
Lohmeier
,
S.
,
Buschmann
,
T.
, and
Ulbrich
,
H.
,
2009
, “
System Design and Control of Anthropomorphic Walking Robot LOLA
,”
IEEE/ASME Trans. Mechatron.
,
14
(
6
), pp.
658
666
. 10.1109/TMECH.2009.2032079
12.
Chi
,
K.-J.
, and
Schmitt
,
D.
,
2004
, “
Mechanical Energy and Effective Foot Mass During Impact Loading of Walking and Running
,”
J. Biomech.
,
38
(
7
), pp.
1387
1395
. 10.1016/j.jbiomech.2004.06.020
13.
Weijers
,
R.
,
Kessels
,
A.
, and
Kemerink
,
G.
,
2004
, “
The Damping Properties of the Venous Plexus of the Heel Region of the Foot During Simulated Heelstrike
,”
J. Biomech.
,
38
(
12
), pp.
2423
2430
. 10.1016/j.jbiomech.2004.10.006
14.
Chi
,
K.-J.
, and
Roth
,
L.
,
2010
, “
Scaling and Mechanics of Carnivoran Footpads Reveal the Principles of Footpad Design
,”
J. R. Soc. Interface
,
7
, pp.
1145
1155
. 10.1098/rsif.2009.0556
15.
Hirai
,
K.
,
Hirose
,
M.
,
Haikawa
,
Y.
, and
Takenaka
,
T.
,
1998
, “
The Development of Honda Humanoid Robot
,”
International Conference on Robotics & Automation
,
Leuven, Belgium
,
May 16–21
, pp.
1321
1326
.
16.
Li
,
J.
,
Huang
,
Q.
,
Zhang
,
W.
,
Yu
,
Z.
, and
Li
,
K.
,
2008
, “
Flexible Foot Design for a Humanoid Robot
,”
IEEE International Conference on Automation and Logistics
,
Qingdao, China
,
Sept. 1–3
, pp.
1414
1419
.
17.
Hurst
,
J.
, and
Rizzi
,
A.
,
2008
, “
Series Compliance for An Efficient Running Gait
,”
IEEE Robotics and Automation Magazine
,
15
(
3
), pp.
42
51
.
18.
Klute
,
G.
, and
Berge
,
J. S.
,
2004
, “
Modelling the Effect of Prosthetic Feet and Shoes on the Heel-Ground Contact Force in Amputee Gait
,”
Proc. Inst. Mech. Eng., J. Eng. Med.
,
218
(
3
), pp.
173
182
. 10.1243/095441104323118897
19.
Nigg
,
B.
, and
Liu
,
W.
,
1999
, “
The Effect of Muscle Stiffness and Damping on Simulated Impact Force Peaks During Running
,”
J. Biomech.
,
32
, pp.
849
856
. 10.1016/S0021-9290(99)00048-2
20.
Najmuddin
,
A.
,
Fukuoka
,
Y.
, and
Ochiai
,
S.
,
2012
, “
Experimental Development of Stiffness Adjustable Foot Sole for Use by Bipedal Robots Walking on Uneven Terrain
,”
IEEE/SICE International Symposium on System Integration
,
Fukuoka, Japan
,
Dec. 16–18
.
21.
Rao
,
S.
,
2011
, “Free Vibrations of Single Degree of Freedom Systems.”
Mechanical Vibrations
.
Prentice Hall
,
Upper Saddle River, NJ
, pp.
166
168
.
You do not currently have access to this content.