Abstract

Inverse dynamics solution of redundantly actuated parallel robots (RAPRs) requires redundancy resolution methods. In this paper, the Lagrange’s equations of the second kind are used to derive governing equations of a chewing RAPR. Jacobian analysis of the RAPR is presented. As redundancy resolutions, two different optimization cost functions corresponding to specific neuromuscular objectives, which are minimization of effort of the muscles of mastication and temporomandibular joints (TMJs) loads, are used to find the RAPR’s optimized actuation torque distributions. The actuation torques under the influence of experimentally determined dynamic chewing forces on molar teeth reproduced from a separate chewing experiment are calculated for realistic in vitro simulation of typical human chewing. These actuation torques are applied to the RAPR with a distributed-computed-torque proportional-derivative control scheme, allowing the RAPR’s mandible to follow a human subject’s chewing trajectory. TMJs loads are measured by force sensors, which are comparable with the computed loads from theoretical formulation. The TMJs loads for the two optimization cost functions are measured while the RAPR is chewing 3 g of peanuts on its left molars. Maximum and mean of the recorded loads on the left TMJ were higher in both cases. Moreover, the maximum and mean of the recorded loads on both TMJs were smaller for the cost function minimizing the TMJs loads. These results demonstrate validity of the model, suggesting the RAPR as a potential TMJ loads measurement tool to study the chewing characteristics of patients suffering from pain in TMJs.

References

1.
Acri
,
T. M.
,
Shin
,
K.
,
Seol
,
D.
,
Laird
,
N. Z.
,
Song
,
I.
,
Geary
,
S. M.
,
Chakka
,
J. L.
,
Martin
,
J. A.
, and
Salem
,
A. K.
,
2019
, “
Tissue Engineering for the Temporomandibular Joint
,”
Adv. Healthcare Mater.
,
8
(
2
), p.
1801236
. 10.1002/adhm.201801236
2.
Christidis
,
N.
,
Lindström Ndanshau
,
E.
,
Sandberg
,
A.
, and
Tsilingaridis
,
G.
,
2019
, “
Prevalence and Treatment Strategies Regarding Temporomandibular Disorders in Children and Adolescents—A Systematic Review
,”
J. Oral Rehabil.
,
46
(
3
), pp.
291
301
. 10.1111/joor.12759
3.
Nickel
,
J. C.
,
Iwasaki
,
L. R.
,
Beatty
,
M. W.
, and
Marx
,
D. B.
,
2004
, “
Laboratory Stresses and Tractional Forces on the TMJ Disc Surface
,”
J. Dent. Res.
,
83
(
8
), pp.
650
654
. 10.1177/154405910408300813
4.
Throckmorton
,
G. S.
, and
Throckmorton
,
L. S.
,
1985
, “
Quantitative Calculations of Temporomandibular Joint Reaction Forces—I. The Importance of the Magnitude of the Jaw Muscle Forces
,”
J. Biomech.
,
18
(
6
), pp.
445
452
. 10.1016/0021-9290(85)90279-9
5.
Berthaume
,
M. A.
,
2016
, “
Food Mechanical Properties and Dietary Ecology
,”
Am. J. Phys. Anthropol.
,
159
, pp.
79
104
. 10.1002/ajpa.22903
6.
Mostashiri
,
N.
,
Dhupia
,
J. S.
,
Verl
,
A. W.
, and
Xu
,
W.
,
2018
, “
A Novel Spatial Mandibular Motion-Capture System Based on Planar Fiducial Markers
,”
IEEE Sens. J.
,
18
(
24
), pp.
10096
10104
. 10.1109/JSEN.2018.2873349
7.
Cheng
,
C.
,
Xu
,
W.
, and
Shang
,
J.
,
2016
, “
Distributed-Torque-Based Independent Joint Tracking Control of a Redundantly Actuated Parallel Robot With Two Higher Kinematic Pairs
,”
IEEE Trans. Ind. Electron.
,
63
(
2
), pp.
1062
1070
. 10.1109/TIE.2015.2481360
8.
Liang
,
D.
,
Song
,
Y.
, and
Sun
,
T.
,
2017
, “
Nonlinear Dynamic Modeling and Performance Analysis of a Redundantly Actuated Parallel Manipulator With Multiple Actuation Modes Based on FMD Theory
,”
Nonlinear Dyn.
,
89
(
1
), pp.
391
428
. 10.1007/s11071-017-3461-x
9.
Garg
,
V.
,
Carretero
,
J. A.
, and
Nokleby
,
S. B.
,
2009
, “
A New Method to Calculate the Force and Moment Workspaces of Actuation Redundant Spatial Parallel Manipulators
,”
ASME J. Mech. Rob.
,
1
(
3
), pp.
31004
31008
. 10.1115/1.3147184
10.
Mostashiri
,
N.
,
Dhupia
,
J. S.
,
Verl
,
A. W.
, and
Xu
,
W.
,
2018
, “
A Review of Research Aspects of Redundantly Actuated Parallel Robots for Enabling Further Applications
,”
IEEE/ASME Trans. Mechatron.
,
23
(
3
), pp.
1259
1269
. 10.1109/TMECH.2018.2792450
11.
Sun
,
C.
,
Xu
,
W. L.
,
Bronlund
,
J. E.
, and
Morgenstern
,
M.
,
2014
, “
Dynamics and Compliance Control of a Linkage Robot for Food Chewing
,”
IEEE Trans. Ind. Electron.
,
61
(
1
), pp.
377
386
. 10.1109/TIE.2013.2251732
12.
Xu
,
W. L.
,
Torrance
,
J. D.
,
Chen
,
B. Q.
,
Potgieter
,
J.
,
Bronlund
,
J. E.
, and
Pap
,
J. S.
,
2008
, “
Kinematics and Experiments of a Life-Sized Masticatory Robot for Characterizing Food Texture
,”
IEEE Trans. Ind. Electron.
,
55
(
5
), pp.
2121
2132
. 10.1109/TIE.2008.918641
13.
Takanobu
,
H.
,
Takanishi
,
A.
, and
Kato
,
I.
,
1994
, “
Control of a Mastication Robot for Reduction of Jaw Joint Force Focusing on Musculus Temporalis
,”
IEEE/RSJ/GI International Conference on Intelligent Robots and Systems (IROS’94)
,
Munich, Germany
,
Sept. 12–16
, Vol.
3
, pp.
1824
1831
.
14.
Takanishi
,
A.
,
Tanase
,
T.
,
Kumei
,
M.
, and
Kato
,
I.
,
1991
, “
Development of 3 DOF Jaw Robot WJ-2 as a Human’s Mastication Simulator
,”
Fifth International Conference on Advanced Robotics 'Robots in Unstructured Environments
,
Pisa, Italy
,
June 19–22
, pp.
277
282
.
15.
Narayanan
,
M. S.
,
Kannan
,
S.
,
Zhou
,
X.
,
Mendel
,
F.
, and
Krovi
,
V.
,
2011
, “
Parallel Architecture Manipulators for Use in Masticatory Studies
,”
Int. J. Intell. Mechatron. Rob.
,
1
(
4
), pp.
100
122
. 10.4018/ijimr.2011100106
16.
Xu
,
W. L.
,
Pap
,
J. S.
, and
Bronlund
,
J.
,
2008
, “
Design of a Biologically Inspired Parallel Robot for Foods Chewing
,”
IEEE Trans. Ind. Electron.
,
55
(
2
), pp.
832
841
. 10.1109/TIE.2007.909067
17.
Wang
,
G.
,
Cong
,
M.
,
Xu
,
W.
,
Wen
,
H.
, and
Du
,
J.
,
2015
, “
A Biomimetic Chewing Robot of Redundantly Actuated Parallel Mechanism
,”
Ind. Rob. Int. J.
,
42
(
2
), pp.
103
109
. 10.1108/IR-11-2014-0416
18.
Lee
,
S. J.
,
Kim
,
B. K.
,
Chun
,
Y. G.
, and
Park
,
D. J.
,
2018
, “
Design of Mastication Robot With Life-Sized Linear Actuator of Human Muscle and Load Cells for Measuring Force Distribution on Teeth
,”
Mechatronics
,
51
, pp.
127
136
. 10.1016/j.mechatronics.2017.11.013
19.
Mostashiri
,
N.
,
Dhupia
,
J.
, and
Xu
,
W.
,
2020
, “
Redundancy in Parallel Robots: A Case Study of Kinematics of a Redundantly Actuated Parallel Chewing Robot
,”
The 6th International Conference on Robot Intelligence Technology and Applications
,
Putrajaya, Malaysia
,
Dec. 16–18
, pp.
65
78
.
20.
Goldmann
,
T.
, and
Himmlova
,
L.
,
2009
, “
A Novel Methodology for In Vivo Monitoring of Chewing Forces Acting on a Single Lower Molar During Bolus Processing
,”
Bull. Appl. Mech.
,
5
(
19
), pp.
66
70
.
21.
Bourne
,
M.
,
2002
,
Food Texture and Viscosity: Concept and Measurement
,
Elsevier
,
New York
.
22.
Mostashiri
,
N.
,
Dhupia
,
J.
,
Verl
,
A.
, and
Xu
,
W.
,
2017
, “
Roadmap for In-Vitro Investigation of Interaction Between Food and Teeth
,”
2017 24th International Conference on Mechatronics and Machine Vision in Practice (M2VIP), IEEE
,
Auckland, New Zealand
,
Nov. 21–23
, pp.
1
6
.
23.
Iwasaki
,
L. R.
,
Crosby
,
M. J.
,
Marx
,
D. B.
,
Gonzalez
,
Y.
,
McCall
,
W. D.
,
Ohrbach
,
R.
, and
Nickel
,
J. C.
,
2010
, “
Human Temporomandibular Joint Eminence Shape and Load Minimization
,”
J. Dent. Res.
,
89
(
7
), pp.
722
727
. 10.1177/0022034510364492
You do not currently have access to this content.